Hyppää sisältöön
    • FI
    • ENG
  • FI
  • /
  • EN
OuluREPO – Oulun yliopiston julkaisuarkisto / University of Oulu repository
Näytä viite 
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

Revisiting pixel-wise supervision for face anti-spoofing

Yu, Zitong; Li, Xiaobai; Shi, Jingang; Xia, Zhaoqiang; Zhao, Guoying (2021-03-11)

 
Avaa tiedosto
nbnfi-fe2021111755734.pdf (2.255Mt)
nbnfi-fe2021111755734_meta.xml (38.44Kt)
nbnfi-fe2021111755734_solr.xml (35.61Kt)
Lataukset: 

URL:
https://doi.org/10.1109/TBIOM.2021.3065526

Yu, Zitong
Li, Xiaobai
Shi, Jingang
Xia, Zhaoqiang
Zhao, Guoying
Institute of Electrical and Electronics Engineers
11.03.2021

Z. Yu, X. Li, J. Shi, Z. Xia and G. Zhao, "Revisiting Pixel-Wise Supervision for Face Anti-Spoofing," in IEEE Transactions on Biometrics, Behavior, and Identity Science, vol. 3, no. 3, pp. 285-295, July 2021, doi: 10.1109/TBIOM.2021.3065526

https://rightsstatements.org/vocab/InC/1.0/
© 2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
https://rightsstatements.org/vocab/InC/1.0/
doi:https://doi.org/10.1109/TBIOM.2021.3065526
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi-fe2021111755734
Tiivistelmä

Abstract

Face anti-spoofing (FAS) plays a vital role in securing face recognition systems from the presentation attacks (PAs). As more and more realistic PAs with novel types spring up, it is necessary to develop robust algorithms for detecting unknown attacks even in unseen scenarios. However, deep models supervised by traditional binary loss (e.g., ’0’ for bonafide vs. ’1’ for PAs) are weak in describing intrinsic and discriminative spoofing patterns. Recently, pixel-wise supervision has been proposed for the FAS task, intending to provide more fine-grained pixel/patch-level cues. In this paper, we firstly give a comprehensive review and analysis about the existing pixel-wise supervision methods for FAS. Then we propose a novel pyramid supervision, which guides deep models to learn both local details and global semantics from multi-scale spatial context. Extensive experiments are performed on five FAS benchmark datasets to show that, without bells and whistles, the proposed pyramid supervision could not only improve the performance beyond existing pixel-wise supervision frameworks, but also enhance the model’s interpretability (i.e., locating the patch-level positions of PAs more reasonably). Furthermore, elaborate studies are conducted for exploring the efficacy of different architecture configurations with two kinds of pixel-wise supervisions (binary mask and depth map supervisions), which provides inspirable insights for future architecture/supervision design.

Kokoelmat
  • Avoin saatavuus [38618]
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen
 

Selaa kokoelmaa

NimekkeetTekijätJulkaisuajatAsiasanatUusimmatSivukartta

Omat tiedot

Kirjaudu sisäänRekisteröidy
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen