Hyppää sisältöön
    • FI
    • ENG
  • FI
  • /
  • EN
OuluREPO – Oulun yliopiston julkaisuarkisto / University of Oulu repository
Näytä viite 
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

Garbot : semantic segmentation for material recycling and 3D reconstruction utilizing robotics

Ariram, Siva; Pennanen, Tuulia; Tikanmäki, Antti; Röning, Juha (2021-08-21)

 
Avaa tiedosto
nbnfi-fe2021102151923.pdf (844.0Kt)
nbnfi-fe2021102151923_meta.xml (37.16Kt)
nbnfi-fe2021102151923_solr.xml (33.01Kt)
Lataukset: 

URL:
https://doi.org/10.1109/ICMA52036.2021.9512716

Ariram, Siva
Pennanen, Tuulia
Tikanmäki, Antti
Röning, Juha
Institute of Electrical and Electronic Engineers
21.08.2021

S. Ariram, T. Pennanen, A. Tikanmäki and J. Röning, "Garbot - Semantic Segmentation for Material Recycling and 3D Reconstruction Utilizing Robotics," 2021 IEEE International Conference on Mechatronics and Automation (ICMA), 2021, pp. 1255-1260, doi: 10.1109/ICMA52036.2021.9512716

https://rightsstatements.org/vocab/InC/1.0/
© 2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
https://rightsstatements.org/vocab/InC/1.0/
doi:https://doi.org/10.1109/ICMA52036.2021.9512716
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi-fe2021102151923
Tiivistelmä

Abstract

Semantic segmentation directly from the images of landfills can be utilized in the earth movers to segregate the garbage autonomously. Generally, Various segregation methods are available for garbage segregation such as IOT based waste segregation, Conveyor belt segregation in which none of them are directly from landfills. Semantic segmentation is one of the important tasks that maps the path towards the complete scene understanding. The aim of this paper is to present a smart segregation method for garbage by using semantic segmentation with DeepLab V3+ Model using the framework(Backbone model) of Xception-65 with the mean accuracy of 75.01%. This paper features the segmentation with the GarbotV1dataset which has major classifications such as Plastic, Cart-board, Wood, Metal, Sponge. The paper also contributes a method for reconstructing the segmented images to build a 3D map and this exploits the use of earth moving vehicles to navigate autonomously by localizing the segmented objects.

Kokoelmat
  • Avoin saatavuus [38697]
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen
 

Selaa kokoelmaa

NimekkeetTekijätJulkaisuajatAsiasanatUusimmatSivukartta

Omat tiedot

Kirjaudu sisäänRekisteröidy
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen