Hyppää sisältöön
    • FI
    • ENG
  • FI
  • /
  • EN
OuluREPO – Oulun yliopiston julkaisuarkisto / University of Oulu repository
Näytä viite 
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

Dual-cross central difference network for face anti-spoofing

Yu, Zitong; Qin, Yunxiao; Zhao, Hengshuang; Li, Xiaobai; Zhao, Guoying (2021-08-31)

 
Avaa tiedosto
nbnfi-fe2021110453716.pdf (398.8Kt)
nbnfi-fe2021110453716_meta.xml (39.18Kt)
nbnfi-fe2021110453716_solr.xml (32.09Kt)
Lataukset: 

URL:
https://doi.org/10.24963/ijcai.2021/177

Yu, Zitong
Qin, Yunxiao
Zhao, Hengshuang
Li, Xiaobai
Zhao, Guoying
International Joint Conferences on Artificial Intelligence Organization
31.08.2021

Yu, Z., Qin, Y., Zhao, H., Li, X., & Zhao, G. (2021). Dual-Cross Central Difference Network for Face Anti-Spoofing. In Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence. Thirtieth International Joint Conference on Artificial Intelligence {IJCAI-21}. International Joint Conferences on Artificial Intelligence Organization. https://doi.org/10.24963/ijcai.2021/177

https://rightsstatements.org/vocab/InC/1.0/
© 2021 International Joint Conferences on Artificial Intelligence.
https://rightsstatements.org/vocab/InC/1.0/
doi:https://doi.org/10.24963/ijcai.2021/177
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi-fe2021110453716
Tiivistelmä

Abstract

Face anti-spoofing (FAS) plays a vital role in securing face recognition systems. Recently, central difference convolution (CDC) has shown its excellent representation capacity for the FAS task via leveraging local gradient features. However, aggregating central difference clues from all neighbors/directions simultaneously makes the CDC redundant and sub-optimized in the training phase. In this paper, we propose two Cross Central Difference Convolutions (C-CDC), which exploit the difference of the center and surround sparse local features from the horizontal/vertical and diagonal directions, respectively. It is interesting to find that, with only five ninth parameters and less computational cost, C-CDC even outperforms the full directional CDC. Based on these two decoupled C-CDC, a powerful Dual-Cross Central Difference Network (DC-CDN) is established with Cross Feature Interaction Modules (CFIM) for mutual relation mining and local detailed representation enhancement. Furthermore, a novel Patch Exchange (PE) augmentation strategy for FAS is proposed via simply exchanging the face patches as well as their dense labels from random samples. Thus, the augmented samples contain richer live/spoof patterns and diverse domain distributions, which benefits the intrinsic and robust feature learning. Comprehensive experiments are performed on four benchmark datasets with three testing protocols to demonstrate our state-of-the-art performance.

Kokoelmat
  • Avoin saatavuus [38697]
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen
 

Selaa kokoelmaa

NimekkeetTekijätJulkaisuajatAsiasanatUusimmatSivukartta

Omat tiedot

Kirjaudu sisäänRekisteröidy
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen