Cooperative perception in vehicular networks using multi-agent reinforcement learning
Abdel-Aziz, Mohamed K.; Samarakoon, Sumudu; Perfecto, Cristina; Bennis, Mehdi (2021-06-03)
M. K. Abdel-Aziz, S. Samarakoon, C. Perfecto and M. Bennis, "Cooperative perception in Vehicular Networks using Multi-Agent Reinforcement Learning," 2020 54th Asilomar Conference on Signals, Systems, and Computers, 2020, pp. 408-412, doi: 10.1109/IEEECONF51394.2020.9443539
© 2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
https://rightsstatements.org/vocab/InC/1.0/
https://urn.fi/URN:NBN:fi-fe2021082744479
Tiivistelmä
Abstract
Cooperative perception plays a vital role in extending a vehicle’s sensing range beyond its line-of-sight. However, exchanging raw sensory data under limited communication resources is infeasible. Towards enabling an efficient cooperative perception, vehicles need to address fundamental questions such as: what sensory data needs to be shared? at which resolution? In this view, this paper proposes a reinforcement learning (RL)-based content selection of cooperative perception messages by utilizing a quadtree-based point cloud compression mechanism. Furthermore, we investigate the role of federated RL to enhance the training process. Simulation results show the ability of the RL agents to efficiently learn the message content selection that maximizes the satisfaction of the vehicles in terms of the received sensory information. It is also shown that federated RL improves the training process, where better policies can be achieved within the same amount of time compared to the non-federated approach.
Kokoelmat
- Avoin saatavuus [34540]