Hyppää sisältöön
    • FI
    • ENG
  • FI
  • /
  • EN
OuluREPO – Oulun yliopiston julkaisuarkisto / University of Oulu repository
Näytä viite 
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

NAS-FAS : static-dynamic central difference network search for face anti-spoofing

Yu, Zitong; Wan, Jun; Qin, Yunxiao; Li, Xiaobai; Li, Stan Z.; Zhao, Guoying (2020-11-09)

 
Avaa tiedosto
nbnfi-fe2021090645217.pdf (15.79Mt)
nbnfi-fe2021090645217_meta.xml (41.60Kt)
nbnfi-fe2021090645217_solr.xml (40.77Kt)
Lataukset: 

URL:
https://doi.org/10.1109/TPAMI.2020.3036338

Yu, Zitong
Wan, Jun
Qin, Yunxiao
Li, Xiaobai
Li, Stan Z.
Zhao, Guoying
Institute of Electrical and Electronics Engineers
09.11.2020

Z. Yu, J. Wan, Y. Qin, X. Li, S. Z. Li and G. Zhao, "NAS-FAS: Static-Dynamic Central Difference Network Search for Face Anti-Spoofing," in IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 43, no. 9, pp. 3005-3023, 1 Sept. 2021, doi: 10.1109/TPAMI.2020.3036338

https://rightsstatements.org/vocab/InC/1.0/
© 2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
https://rightsstatements.org/vocab/InC/1.0/
doi:https://doi.org/10.1109/TPAMI.2020.3036338
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi-fe2021090645217
Tiivistelmä

Abstract

Face anti-spoofing (FAS) plays a vital role in securing face recognition systems. Existing methods heavily rely on the expert-designed networks, which may lead to a sub-optimal solution for FAS task. Here we propose the first FAS method based on neural architecture search (NAS), called NAS-FAS, to discover the well-suited task-aware networks. Unlike previous NAS works mainly focus on developing efficient search strategies in generic object classification, we pay more attention to study the search spaces for FAS task. The challenges of utilizing NAS for FAS are in two folds: the networks searched on 1) a specific acquisition condition might perform poorly in unseen conditions, and 2) particular spoofing attacks might generalize badly for unseen attacks. To overcome these two issues, we develop a novel search space consisting of central difference convolution and pooling operators. Moreover, an efficient static-dynamic representation is exploited for fully mining the FAS-aware spatio-temporal discrepancy. Besides, we propose Domain/Type-aware Meta-NAS, which leverages cross-domain/type knowledge for robust searching. Finally, in order to evaluate the NAS transferability for cross datasets and unknown attack types, we release a large-scale 3D mask dataset, namely CASIA-SURF 3DMask, for supporting the new ‘cross-dataset cross-type’ testing protocol. Experiments demonstrate that the proposed NAS-FAS achieves state-of-the-art performance on nine FAS benchmark datasets with four testing protocols.

Kokoelmat
  • Avoin saatavuus [38840]
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen
 

Selaa kokoelmaa

NimekkeetTekijätJulkaisuajatAsiasanatUusimmatSivukartta

Omat tiedot

Kirjaudu sisäänRekisteröidy
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen