Hyppää sisältöön
    • FI
    • ENG
  • FI
  • /
  • EN
OuluREPO – Oulun yliopiston julkaisuarkisto / University of Oulu repository
Näytä viite 
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

3D skeletal gesture recognition via discriminative coding on time-warping invariant Riemannian trajectories

Liu, Xin; Zhao, Guoying (2021-06-22)

 
Avaa tiedosto
nbnfi-fe2021101450968.pdf (1013.Kt)
nbnfi-fe2021101450968_meta.xml (29.59Kt)
nbnfi-fe2021101450968_solr.xml (34.99Kt)
Lataukset: 

URL:
https://doi.org/10.1109/TMM.2020.3003783

Liu, Xin
Zhao, Guoying
Institute of Electrical and Electronics Engineers
22.06.2021

X. Liu and G. Zhao, "3D Skeletal Gesture Recognition via Discriminative Coding on Time-Warping Invariant Riemannian Trajectories," in IEEE Transactions on Multimedia, vol. 23, pp. 1841-1854, 2021, doi: 10.1109/TMM.2020.3003783

https://rightsstatements.org/vocab/InC/1.0/
© 2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
https://rightsstatements.org/vocab/InC/1.0/
doi:https://doi.org/10.1109/TMM.2020.3003783
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi-fe2021101450968
Tiivistelmä

Abstract

Learning 3D skeleton-based representation for gesture recognition has progressively stood out because of its invariance to the viewpoint and background dynamics of video. Typically, existing techniques use absolute coordinates to determine human motion features. The recognition of gestures, however, is irrespective of the position of the performer, and the extracted features should be invariant to body size. In addition, when comparing and classifying gestures, the problem of temporal dynamics can greatly distort the distance metric. In this paper, we represent a 3D skeleton as a point in the special orthogonal group SO(3) product space that expressly models the 3D geometric relationships between body parts. As such, a gesture skeletal sequence can be described by a trajectory on a Riemannian manifold. Following that, we propose to generalize the transported square-root vector field to obtain a time-warping invariant metric for comparing these trajectories (identifying these gestures). Moreover, by specifically considering the labeling information with encoding, a sparse coding scheme of skeletal trajectories is presented to enforce the discriminant validity of atoms in the dictionary. Experimental results indicate that the proposed approach has achieved state-of-the-art performance on many challenging gesture recognition benchmarks.

Kokoelmat
  • Avoin saatavuus [37575]
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen
 

Selaa kokoelmaa

NimekkeetTekijätJulkaisuajatAsiasanatUusimmatSivukartta

Omat tiedot

Kirjaudu sisäänRekisteröidy
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen