Hyppää sisältöön
    • FI
    • ENG
  • FI
  • /
  • EN
OuluREPO – Oulun yliopiston julkaisuarkisto / University of Oulu repository
Näytä viite 
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

A correlation-driven mapping for deep learning application in detecting artifacts within the EEG

Bahador, Nooshin; Erikson, Kristo; Laurila, Jouko; Koskenkari, Juha; Ala-Kokko, Tero; Kortelainen, Jukka (2020-10-12)

 
Avaa tiedosto
nbnfi-fe20201216100923.pdf (3.489Mt)
nbnfi-fe20201216100923_meta.xml (55.32Kt)
nbnfi-fe20201216100923_solr.xml (43.85Kt)
Lataukset: 

URL:
https://doi.org/10.1088/1741-2552/abb5bd

Bahador, Nooshin
Erikson, Kristo
Laurila, Jouko
Koskenkari, Juha
Ala-Kokko, Tero
Kortelainen, Jukka
IOP Publishing
12.10.2020

Nooshin Bahador et al 2020 J. Neural Eng. 17 056018

https://rightsstatements.org/vocab/InC/1.0/
© 2020 IOP Publishing Ltd. The Definitive Version of Record can be found online at: https://doi.org/10.1088/1741-2552/abb5bd.
https://rightsstatements.org/vocab/InC/1.0/
doi:https://doi.org/10.1088/1741-2552/abb5bd
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi-fe20201216100923
Tiivistelmä

Abstract

Objective: When developing approaches for automatic preprocessing of electroencephalogram (EEG) signals in non-isolated demanding environment such as intensive care unit (ICU) or even outdoor environment, one of the major concerns is varying nature of characteristics of different artifacts in time, frequency and spatial domains, which in turn causes a simple approach to be not enough for reliable artifact removal. Considering this, current study aims to use correlation-driven mapping to improve artifact detection performance.

Approach: A framework is proposed here for mapping signals from multichannel space (regardless of the number of EEG channels) into two-dimensional RGB space, in which the correlation of all EEG channels is simultaneously taken into account, and a deep convolutional neural network (CNN) model can then learn specific patterns in generated 2D representation related to specific artifact.

Main results: The method with a classification accuracy of 92.30% (AUC = 0.96) in a leave-three-subjects-out cross-validation procedure was evaluated using data including 2310 EEG sequences contaminated by artifacts and 2285 artifact-free EEG sequences collected with BrainStatus self-adhesive electrode and wireless amplifier from 15 intensive care patients. For further assessment, several scenarios were also tested including performance variation of proposed method under different segment lengths, different numbers of isoline and different numbers of channel. The results showed outperformance of CNN fed by correlation coefficients data over both spectrogram-based CNN and EEGNet on the same dataset.

Significance: This study showed the feasibility of utilizing correlation image of EEG channels coupled with deep learning as a promising tool for dimensionality reduction, channels fusion and capturing various artifacts patterns in temporal-spatial domains. A simplified version of proposed approach was also shown to be feasible in real-time application with latency of 0.0181 s for making real-time decision.

Kokoelmat
  • Avoin saatavuus [37714]
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen
 

Selaa kokoelmaa

NimekkeetTekijätJulkaisuajatAsiasanatUusimmatSivukartta

Omat tiedot

Kirjaudu sisäänRekisteröidy
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen