Hyppää sisältöön
    • FI
    • ENG
  • FI
  • /
  • EN
OuluREPO – Oulun yliopiston julkaisuarkisto / University of Oulu repository
Näytä viite 
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

Channel Modeling and Analysis of Reconfigurable Intelligent Surfaces Assisted Vehicular Networks

Kong, Long; He, Jiguang; Ai, Yun; Chatzinotas, Symeon; Ottersten, Björn (2021-07-09)

 
Avaa tiedosto
nbnfi-fe2021100149103.pdf (1.308Mt)
nbnfi-fe2021100149103_meta.xml (36.97Kt)
nbnfi-fe2021100149103_solr.xml (37.44Kt)
Lataukset: 

URL:
https://doi.org/10.1109/ICCWorkshops50388.2021.9473681

Kong, Long
He, Jiguang
Ai, Yun
Chatzinotas, Symeon
Ottersten, Björn
Institute of Electrical and Electronics Engineers
09.07.2021

L. Kong, J. He, Y. Ai, S. Chatzinotas and B. Ottersten, "Channel Modeling and Analysis of Reconfigurable Intelligent Surfaces Assisted Vehicular Networks," 2021 IEEE International Conference on Communications Workshops (ICC Workshops), 2021, pp. 1-6, doi: 10.1109/ICCWorkshops50388.2021.9473681

https://rightsstatements.org/vocab/InC/1.0/
© 2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
https://rightsstatements.org/vocab/InC/1.0/
doi:https://doi.org/10.1109/ICCWorkshops50388.2021.9473681
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi-fe2021100149103
Tiivistelmä

Abstract

The new concept named reconfigurable intelligent surfaces (RIS) is becoming an appealing enabler due to its uniqueness with having low hardware complexity and low power consumption advantages simultaneously. In this paper, an RIS-aided vehicular Adhoc network (VANET) is considered, where the beacon vehicle is enabled with a passive RIS, the communication links between the beacon vehicle and client vehicle caused due to the multipath fading effects, are modeled with Fox’s H-function distribution. This paper first models the inter-vehicle links for the given system setup and then investigates the outage probability and effective rate as performance metrics. More specifically, the unsupervised expectation-maximization (EM) algorithm is consequently used to characterize the distribution of the received signal-to-noise ratio (SNR) at the client vehicle, which is modeled as the mixture of Gaussian (MoG) distribution. The accuracy of our approach is further validated with the Kolmogorov-Smirnov (KS) goodness of fit test. The MoG-based approach successfully tackles the RIS-enabled inter-vehicle communication with an easy, accurate, and tractable solution compared to the widely used central limit theorem (CLT) method. It leads to the closed-form outage probability and effective rate expressions.

Kokoelmat
  • Avoin saatavuus [38865]
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen
 

Selaa kokoelmaa

NimekkeetTekijätJulkaisuajatAsiasanatUusimmatSivukartta

Omat tiedot

Kirjaudu sisäänRekisteröidy
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen