Hyppää sisältöön
    • FI
    • ENG
  • FI
  • /
  • EN
OuluREPO – Oulun yliopiston julkaisuarkisto / University of Oulu repository
Näytä viite 
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

Attention-weighted federated deep reinforcement learning for device-to-device assisted heterogeneous collaborative edge caching

Wang, Xiaofei; Li, Ruibin; Wang, Chenyang; Li, Xiuhua; Taleb, Tarik; Leung, Victor C. M. (2020-11-09)

 
Avaa tiedosto
nbnfi-fe202103298628.pdf (13.45Mt)
nbnfi-fe202103298628_meta.xml (39.66Kt)
nbnfi-fe202103298628_solr.xml (44.27Kt)
Lataukset: 

URL:
https://doi.org/10.1109/JSAC.2020.3036946

Wang, Xiaofei
Li, Ruibin
Wang, Chenyang
Li, Xiuhua
Taleb, Tarik
Leung, Victor C. M.
Institute of Electrical and Electronics Engineers
09.11.2020

X. Wang, R. Li, C. Wang, X. Li, T. Taleb and V. C. M. Leung, "Attention-Weighted Federated Deep Reinforcement Learning for Device-to-Device Assisted Heterogeneous Collaborative Edge Caching," in IEEE Journal on Selected Areas in Communications, vol. 39, no. 1, pp. 154-169, Jan. 2021, doi: 10.1109/JSAC.2020.3036946

https://rightsstatements.org/vocab/InC/1.0/
© 2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
https://rightsstatements.org/vocab/InC/1.0/
doi:https://doi.org/10.1109/JSAC.2020.3036946
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi-fe202103298628
Tiivistelmä

Abstract

In order to meet the growing demands for multimedia service access and release the pressure of the core network, edge caching and device-to-device (D2D) communication have been regarded as two promising techniques in next generation mobile networks and beyond. However, most existing related studies lack consideration of effective cooperation and adaptability to the dynamic network environments. In this article, based on the flexible trilateral cooperation among user equipment, edge base stations and a cloud server, we propose a D2D-assisted heterogeneous collaborative edge caching framework by jointly optimizing the node selection and cache replacement in mobile networks. We formulate the joint optimization problem as a Markov decision process, and use a deep Q-learning network to solve the long-term mixed integer linear programming problem. We further design an attention-weighted federated deep reinforcement learning (AWFDRL) model that uses federated learning to improve the training efficiency of the Q-learning network by considering the limited computing and storage capacity, and incorporates an attention mechanism to optimize the aggregation weights to avoid the imbalance of local model quality. We prove the convergence of the corresponding algorithm, and present simulation results to show the effectiveness of the proposed AWFDRL framework in reducing average delay of content access, improving hit rate and offloading traffic.

Kokoelmat
  • Avoin saatavuus [38865]
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen
 

Selaa kokoelmaa

NimekkeetTekijätJulkaisuajatAsiasanatUusimmatSivukartta

Omat tiedot

Kirjaudu sisäänRekisteröidy
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen