Hyppää sisältöön
    • FI
    • ENG
  • FI
  • /
  • EN
OuluREPO – Oulun yliopiston julkaisuarkisto / University of Oulu repository
Näytä viite 
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

Iterative reweighted algorithms for joint user identification and channel estimation in spatially correlated massive MTC

Djelouat, Hamza; Leinonen, Markus; Juntti, Markku (2021-05-13)

 
Avaa tiedosto
nbnfi-fe2021080642186.pdf (354.9Kt)
nbnfi-fe2021080642186_meta.xml (33.30Kt)
nbnfi-fe2021080642186_solr.xml (33.62Kt)
Lataukset: 

URL:
https://doi.org/10.1109/ICASSP39728.2021.9413733

Djelouat, Hamza
Leinonen, Markus
Juntti, Markku
Institute of Electrical and Electronics Engineers
13.05.2021

H. Djelouat, M. Leinonen and M. Juntti, "Iterative Reweighted Algorithms for Joint User Identification and Channel Estimation in Spatially Correlated Massive MTC," ICASSP 2021 - 2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2021, pp. 4805-4809, doi: 10.1109/ICASSP39728.2021.9413733

https://rightsstatements.org/vocab/InC/1.0/
© 2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
https://rightsstatements.org/vocab/InC/1.0/
doi:https://doi.org/10.1109/ICASSP39728.2021.9413733
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi-fe2021080642186
Tiivistelmä

Abstract

Joint user identification and channel estimation (JUICE) is a main challenge in grant-free massive machine-type communications (mMTC). The sparse pattern in users’ activity allows to solve the JUICE as a compressed sensing problem in a multiple measurement vector (MMV) setup. This paper addresses the JUICE under the practical spatially correlated fading channel. We formulate the JUICE as an iterative reweighted ℓ 2,1 -norm optimization. We develop a computationally efficient alternating direction method of multipliers (ADMM) approach to solve it. In particular, by leveraging the second-order statistics of the channels, we reformulate the JUICE problem to exploit the covariance information and we derive its ADMM-based solution. The simulation results highlight the significant improvements brought by the proposed approach in terms of channel estimation and activity detection performances.

Kokoelmat
  • Avoin saatavuus [38840]
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen
 

Selaa kokoelmaa

NimekkeetTekijätJulkaisuajatAsiasanatUusimmatSivukartta

Omat tiedot

Kirjaudu sisäänRekisteröidy
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen