Hyppää sisältöön
    • FI
    • ENG
  • FI
  • /
  • EN
OuluREPO – Oulun yliopiston julkaisuarkisto / University of Oulu repository
Näytä viite 
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

Automated visual defect classification for flat steel surface : a survey

Luo, Qiwu; Fang, Xiaoxin; Su, Jiaojiao; Zhou, Jian; Zhou, Bingxing; Yang, Chunhua; Liu, Li; Gui, Weihua; Tian, Lu (2020-10-12)

 
Avaa tiedosto
nbnfi-fe202103046496.pdf (1.533Mt)
nbnfi-fe202103046496_meta.xml (46.73Kt)
nbnfi-fe202103046496_solr.xml (41.72Kt)
Lataukset: 

URL:
https://doi.org/10.1109/TIM.2020.3030167

Luo, Qiwu
Fang, Xiaoxin
Su, Jiaojiao
Zhou, Jian
Zhou, Bingxing
Yang, Chunhua
Liu, Li
Gui, Weihua
Tian, Lu
Institute of Electrical and Electronics Engineers
12.10.2020

Q. Luo et al., "Automated Visual Defect Classification for Flat Steel Surface: A Survey," in IEEE Transactions on Instrumentation and Measurement, vol. 69, no. 12, pp. 9329-9349, Dec. 2020, doi: 10.1109/TIM.2020.3030167

https://rightsstatements.org/vocab/InC/1.0/
© 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
https://rightsstatements.org/vocab/InC/1.0/
doi:https://doi.org/10.1109/TIM.2020.3030167
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi-fe202103046496
Tiivistelmä

Abstract

For a typical surface automated visual inspection (AVI) instrument of planar materials, defect classification is an indispensable part after defect detection, which acts as a crucial precondition for achieving the online quality inspection of end products. In the industrial environment of manufacturing flat steels, this task is awfully difficult due to diverse defect appearances, ambiguous intraclass, and interclass distances. This article attempts to present a focused but systematic review of the traditional and emerging automated computer-vision-based defect classification methods by investigating approximately 140 studies on three specific flat steel products of con-casting slabs, hot-rolled steel strips, and cold-rolled steel strips. According to the natural image processing procedure of defect recognition, the diverse approaches are grouped into five successive parts: image acquisition, image preprocessing, feature extraction, feature selection, and defect classifier. Recent literature has been reviewed from an industrial goal-oriented perspective to provide some guidelines for future studies and recommend suitable methods for boosting the surface quality inspection level of AVI instruments.

Kokoelmat
  • Avoin saatavuus [38358]
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen
 

Selaa kokoelmaa

NimekkeetTekijätJulkaisuajatAsiasanatUusimmatSivukartta

Omat tiedot

Kirjaudu sisäänRekisteröidy
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen