Hyppää sisältöön
    • FI
    • ENG
  • FI
  • /
  • EN
OuluREPO – Oulun yliopiston julkaisuarkisto / University of Oulu repository
Näytä viite 
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

Graph adversarial learning for noisy skeleton-based action recognition

Shi, Henglin; Peng, Wei; Liu, Xin; Zhao, Guoying (2021-01-18)

 
Avaa tiedosto
nbnfi-fe2021041410352.pdf (583.6Kt)
nbnfi-fe2021041410352_meta.xml (36.07Kt)
nbnfi-fe2021041410352_solr.xml (30.41Kt)
Lataukset: 

URL:
https://doi.org/10.2352/issn.2470-1173.2021.10.ipas-239

Shi, Henglin
Peng, Wei
Liu, Xin
Zhao, Guoying
Society for Imaging Science & Technology
18.01.2021

Graph Adversarial Learning for Noisy Skeleton-based Action Recognition. (2021). Electronic Imaging. https://doi.org/10.2352/issn.2470-1173.2021.10.ipas-239

https://rightsstatements.org/vocab/InC/1.0/
© 2021, Society for Imaging Science and Technology.
https://rightsstatements.org/vocab/InC/1.0/
doi:https://doi.org/10.2352/ISSN.2470-1173.2021.10.IPAS-239
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi-fe2021041410352
Tiivistelmä

Abstract

Skeleton based action recognition is playing a critical role in computer vision research, its applications have been widely deployed in many areas. Currently, benefiting from the graph convolutional networks (GCN), the performance of this task is dramatically improved due to the powerful ability of GCN for modeling the Non-Euclidean data. However, most of these works are designed for the clean skeleton data while one unavoidable drawback is such data is usually noisy in reality, since most of such data is obtained using depth camera or even estimated from RGB camera, rather than recorded by the high quality but extremely costly Motion Capture (MoCap) [1] system. Under this circumstance, we propose a novel GCN framework with adversarial training to deal with the noisy skeleton data. With the guiding of the clean data in the semantic level, a reliable graph embedding can be extracted for noisy skeleton data. Besides, a discriminator is introduced such that the feature representation could further improved since it is learned with an adversarial learning fashion. We empirically demonstrate the proposed framework based on two current largest scale skeleton-based action recognition datasets. Comparison results show the superiority of our method when compared to the state-of-the-art methods under the noisy settings.

Kokoelmat
  • Avoin saatavuus [38865]
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen
 

Selaa kokoelmaa

NimekkeetTekijätJulkaisuajatAsiasanatUusimmatSivukartta

Omat tiedot

Kirjaudu sisäänRekisteröidy
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen