Hyppää sisältöön
    • FI
    • ENG
  • FI
  • /
  • EN
OuluREPO – Oulun yliopiston julkaisuarkisto / University of Oulu repository
Näytä viite 
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

Development of task-oriented ROS-based autonomous UGV with 3D object detection

Raveendran, Rajesh; Ariram, Siva; Tikanmäki, Antti; Röning, Juha (2020-12-30)

 
Avaa tiedosto
nbnfi-fe202102154781.pdf (2.003Mt)
nbnfi-fe202102154781_meta.xml (36.74Kt)
nbnfi-fe202102154781_solr.xml (30.99Kt)
Lataukset: 

URL:
https://doi.org/10.1109/RCAR49640.2020.9303034

Raveendran, Rajesh
Ariram, Siva
Tikanmäki, Antti
Röning, Juha
Institute of Electrical and Electronics Engineers
30.12.2020

R. Raveendran, S. Ariram, A. Tikanmäki and J. Röning, "Development of task-oriented ROS-based Autonomous UGV with 3D Object Detection," 2020 IEEE International Conference on Real-time Computing and Robotics (RCAR), Asahikawa, Japan, 2020, pp. 427-432, doi: 10.1109/RCAR49640.2020.9303034

https://rightsstatements.org/vocab/InC/1.0/
© 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
https://rightsstatements.org/vocab/InC/1.0/
doi:https://doi.org/10.1109/RCAR49640.2020.9303034
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi-fe202102154781
Tiivistelmä

Abstract

In a scenario where fire accidents takes place the priority is always human safety and acting swiftly to contain the fire from further spreading. The modern autonomous systems can promise both human safety and can perform actions rapidly. One such scenario which is motivated by urban firefighting was designed in challenge 3 of MBZIRC 2020 competition. In this challenge the UAV’s and UGV collaborate autonomously to detect the fire and quench the flames with water. So, in this project we have developed Robot Operating System (ROS)-based autonomous system to solve the challenge for UGV criteria by detecting targeted objects in real-time, in our case its simulated fire and red colored softballs. Then finally localize those targets as markers in the map and navigate autonomously to all those targets. This work has two sections, in the first section mapping and localizing the fire and softballs in highly cluttered environment and then reaching those targets autonomously. Robustly mapping the area with adequate sensors and detection of targets with optimally trained CNN based network is the key to localizing of the targeted objects in a highly cluttered environments.

Kokoelmat
  • Avoin saatavuus [38840]
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen
 

Selaa kokoelmaa

NimekkeetTekijätJulkaisuajatAsiasanatUusimmatSivukartta

Omat tiedot

Kirjaudu sisäänRekisteröidy
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen