Hyppää sisältöön
    • FI
    • ENG
  • FI
  • /
  • EN
OuluREPO – Oulun yliopiston julkaisuarkisto / University of Oulu repository
Näytä viite 
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

Event-driven source traffic prediction in machine-type communications using LSTM networks

Senevirathna, Thulitha; Thennakoon, Bathiya; Sankalpa, Tharindu; Seneviratne, Chatura; Ali, Samad; Rajatheva, Nandana (2021-01-25)

 
Avaa tiedosto
nbnfi-fe202102154785.pdf (132.8Kt)
nbnfi-fe202102154785_meta.xml (40.05Kt)
nbnfi-fe202102154785_solr.xml (35.38Kt)
Lataukset: 

URL:
https://doi.org/10.1109/GLOBECOM42002.2020.9322417

Senevirathna, Thulitha
Thennakoon, Bathiya
Sankalpa, Tharindu
Seneviratne, Chatura
Ali, Samad
Rajatheva, Nandana
Institute of Electrical and Electronics Engineers
25.01.2021

T. Senevirathna, B. Thennakoon, T. Sankalpa, C. Senevirathna, S. Ali and N. Rajatheva, "Event-Driven Source Traffic Prediction in Machine-Type Communications Using LSTM Networks," GLOBECOM 2020 - 2020 IEEE Global Communications Conference, Taipei, Taiwan, 2020, pp. 1-6, doi: 10.1109/GLOBECOM42002.2020.9322417

https://rightsstatements.org/vocab/InC/1.0/
© 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
https://rightsstatements.org/vocab/InC/1.0/
doi:https://doi.org/10.1109/GLOBECOM42002.2020.9322417
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi-fe202102154785
Tiivistelmä

Abstract

Source traffic prediction is one of the main challenges of enabling predictive resource allocation in machine-type communications (MTC). In this paper, a long short-term memory (LSTM) based deep learning approach is proposed for event-driven source traffic prediction. The source traffic prediction problem can be formulated as a sequence generation task where the main focus is predicting the transmission states of machine-type devices (MTDs) based on their past transmission data. This is done by restructuring the transmission data in a way that the LSTM network can identify the causal relationship between the devices. Knowledge of such a causal relationship can enable event-driven traffic prediction. The performance of the proposed approach is studied using data regarding events from MTDs with different ranges of entropy. Our model outperforms existing baseline solutions in saving resources and accuracy with a margin of around 9%. Reduction in random access (RA) requests by our model is also analyzed to demonstrate the low amount of signaling required as a result of our proposed LSTM based source traffic prediction approach.

Kokoelmat
  • Avoin saatavuus [38865]
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen
 

Selaa kokoelmaa

NimekkeetTekijätJulkaisuajatAsiasanatUusimmatSivukartta

Omat tiedot

Kirjaudu sisäänRekisteröidy
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen