Hyppää sisältöön
    • FI
    • ENG
  • FI
  • /
  • EN
OuluREPO – Oulun yliopiston julkaisuarkisto / University of Oulu repository
Näytä viite 
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

JGR-P2O : joint graph reasoning based pixel-to-offset prediction network for 3D hand pose estimation from a single depth image

Fang, Linpu; Liu, Xingyan; Liu, Li; Xu, Hang; Kang, Wenxiong (2020-11-07)

 
Avaa tiedosto
nbnfi-fe202102154793.pdf (1.185Mt)
nbnfi-fe202102154793_meta.xml (44.22Kt)
nbnfi-fe202102154793_solr.xml (39.42Kt)
Lataukset: 

URL:
https://doi.org/10.1007/978-3-030-58539-6_8

Fang, Linpu
Liu, Xingyan
Liu, Li
Xu, Hang
Kang, Wenxiong
Springer Nature
07.11.2020

Fang L., Liu X., Liu L., Xu H., Kang W. (2020) JGR-P2O: Joint Graph Reasoning Based Pixel-to-Offset Prediction Network for 3D Hand Pose Estimation from a Single Depth Image. In: Vedaldi A., Bischof H., Brox T., Frahm JM. (eds) Computer Vision – ECCV 2020. ECCV 2020. Lecture Notes in Computer Science, vol 12351. Springer, Cham. https://doi.org/10.1007/978-3-030-58539-6_8

https://rightsstatements.org/vocab/InC/1.0/
© Springer Nature Switzerland AG 2020. This is a post-peer-review, pre-copyedit version of an article published in Computer Vision – ECCV 2020. ECCV 2020. The final authenticated version is available online at: https://doi.org/10.1007/978-3-030-58539-6_8.
https://rightsstatements.org/vocab/InC/1.0/
doi:https://doi.org/10.1007/978-3-030-58539-6_8
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi-fe202102154793
Tiivistelmä

Abstract

State-of-the-art single depth image-based 3D hand pose estimation methods are based on dense predictions, including voxel-to-voxel predictions, point-to-point regression, and pixel-wise estimations. Despite the good performance, those methods have a few issues in nature, such as the poor trade-off between accuracy and efficiency, and plain feature representation learning with local convolutions. In this paper, a novel pixel-wise prediction-based method is proposed to address the above issues. The key ideas are two-fold: (a) explicitly modeling the dependencies among joints and the relations between the pixels and the joints for better local feature representation learning; (b) unifying the dense pixel-wise offset predictions and direct joint regression for end-to-end training. Specifically, we first propose a graph convolutional network (GCN) based joint graph reasoning module to model the complex dependencies among joints and augment the representation capability of each pixel. Then we densely estimate all pixels’ offsets to joints in both image plane and depth space and calculate the joints’ positions by a weighted average over all pixels’ predictions, totally discarding the complex post-processing operations. The proposed model is implemented with an efficient 2D fully convolutional network (FCN) backbone and has only about 1.4M parameters. Extensive experiments on multiple 3D hand pose estimation benchmarks demonstrate that the proposed method achieves new state-of-the-art accuracy while running very efficiently with around a speed of 110 fps on a single NVIDIA 1080Ti GPU (This work was supported in part by the National Natural Science Foundation of China under Grants 61976095, in part by the Science and Technology Planning Project of Guangdong Province under Grant 2018B030323026. This work was also partially supported by the Academy of Finland.). The code is available at https://github.com/fanglinpu/JGR-P2O.

Kokoelmat
  • Avoin saatavuus [38824]
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen
 

Selaa kokoelmaa

NimekkeetTekijätJulkaisuajatAsiasanatUusimmatSivukartta

Omat tiedot

Kirjaudu sisäänRekisteröidy
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen