Hyppää sisältöön
    • FI
    • ENG
  • FI
  • /
  • EN
OuluREPO – Oulun yliopiston julkaisuarkisto / University of Oulu repository
Näytä viite 
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

A user-centric mechanism for sequentially releasing graph datasets under blowfish privacy

Chicha, Elie; Al Bouna, Bechara; Nassar, Mohamed; Chbeir, Richard; Haraty, Ramzi A.; Oussalah, Mourad; Benslimane, Djamal; Alraja, Mansour Naser (2021-02-28)

 
Avaa tiedosto
nbnfi-fe2021051730031.pdf (2.753Mt)
nbnfi-fe2021051730031_meta.xml (43.17Kt)
nbnfi-fe2021051730031_solr.xml (35.02Kt)
Lataukset: 

URL:
https://doi.org/10.1145/3431501

Chicha, Elie
Al Bouna, Bechara
Nassar, Mohamed
Chbeir, Richard
Haraty, Ramzi A.
Oussalah, Mourad
Benslimane, Djamal
Alraja, Mansour Naser
Association for Computing Machinery
28.02.2021

Elie Chicha, Bechara Al Bouna, Mohamed Nassar, Richard Chbeir, Ramzi A. Haraty, Mourad Oussalah, Djamal Benslimane, and Mansour Naser Alraja. 2021. A User-Centric Mechanism for Sequentially Releasing Graph Datasets under Blowfish Privacy. ACM Trans. Internet Technol. 21, 1, Article 20 (February 2021), 25 pages. DOI:https://doi.org/10.1145/3431501

https://rightsstatements.org/vocab/InC/1.0/
© 2021 Association for Computing Machinery. This is the author's version of the work. It is posted here for your personal use. Not for redistribution. The definitive Version of Record was published in ACM Transactions on Internet Technology, https://doi.org/10.1145/3431501.
https://rightsstatements.org/vocab/InC/1.0/
doi:https://doi.org/10.1145/3431501
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi-fe2021051730031
Tiivistelmä

Abstract

In this article, we present a privacy-preserving technique for user-centric multi-release graphs. Our technique consists of sequentially releasing anonymized versions of these graphs under Blowfish Privacy. To do so, we introduce a graph model that is augmented with a time dimension and sampled at discrete time steps. We show that the direct application of state-of-the-art privacy-preserving Differential Private techniques is weak against background knowledge attacker models. We present different scenarios where randomizing separate releases independently is vulnerable to correlation attacks. Our method is inspired by Differential Privacy (DP) and its extension Blowfish Privacy (BP). To validate it, we show its effectiveness as well as its utility by experimental simulations.

Kokoelmat
  • Avoin saatavuus [38841]
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen
 

Selaa kokoelmaa

NimekkeetTekijätJulkaisuajatAsiasanatUusimmatSivukartta

Omat tiedot

Kirjaudu sisäänRekisteröidy
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen