Hyppää sisältöön
    • FI
    • ENG
  • FI
  • /
  • EN
OuluREPO – Oulun yliopiston julkaisuarkisto / University of Oulu repository
Näytä viite 
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

Prognostic significance of immune cell populations identified by machine learning in colorectal cancer using routine hematoxylin and eosin–stained sections

Väyrynen, Juha P.; Lau, Mai Chan; Haruki, Koichiro; Väyrynen, Sara A.; Costa, Andressa Dias; Borowsky, Jennifer; Zhao, Melissa; Fujiyoshi, Kenji; Arima, Kota; Twombly, Tyler S.; Kishikawa, Junko; Gu, Simeng; Aminmozaffari, Saina; Shi, Shanshan; Baba, Yoshifumi; Akimoto, Naohiko; Ugai, Tomotaka; Da Silva, Annacarolina; Song, Mingyang; Wu, Kana; Chan, Andrew T.; Nishihara, Reiko; Fuchs, Charles S.; Meyerhardt, Jeffrey A.; Giannakis, Marios; Ogino, Shuji; Nowak, Jonathan A. (2020-05-21)

 
Avaa tiedosto
nbnfi-fe2021042611913.pdf (1.818Mt)
nbnfi-fe2021042611913_meta.xml (104.0Kt)
nbnfi-fe2021042611913_solr.xml (84.84Kt)
Lataukset: 

URL:
https://doi.org/10.1158/1078-0432.ccr-20-0071

Väyrynen, Juha P.
Lau, Mai Chan
Haruki, Koichiro
Väyrynen, Sara A.
Costa, Andressa Dias
Borowsky, Jennifer
Zhao, Melissa
Fujiyoshi, Kenji
Arima, Kota
Twombly, Tyler S.
Kishikawa, Junko
Gu, Simeng
Aminmozaffari, Saina
Shi, Shanshan
Baba, Yoshifumi
Akimoto, Naohiko
Ugai, Tomotaka
Da Silva, Annacarolina
Song, Mingyang
Wu, Kana
Chan, Andrew T.
Nishihara, Reiko
Fuchs, Charles S.
Meyerhardt, Jeffrey A.
Giannakis, Marios
Ogino, Shuji
Nowak, Jonathan A.
American Association for Cancer Research
21.05.2020

Väyrynen, J. P., Lau, M. C., Haruki, K., Väyrynen, S. A., Dias Costa, A., Borowsky, J., Zhao, M., Fujiyoshi, K., Arima, K., Twombly, T. S., Kishikawa, J., Gu, S., Aminmozaffari, S., Shi, S., Baba, Y., Akimoto, N., Ugai, T., Da Silva, A., Song, M., … Nowak, J. A. (2020). Prognostic Significance of Immune Cell Populations Identified by Machine Learning in Colorectal Cancer Using Routine Hematoxylin and Eosin–Stained Sections. Clinical Cancer Research, 26(16), 4326–4338. https://doi.org/10.1158/1078-0432.ccr-20-0071

https://rightsstatements.org/vocab/InC/1.0/
© 2020 American Association for Cancer Research.
https://rightsstatements.org/vocab/InC/1.0/
doi:https://doi.org/10.1158/1078-0432.CCR-20-0071
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi-fe2021042611913
Tiivistelmä

Abstract

Purpose: Although high T-cell density is a well-established favorable prognostic factor in colorectal cancer, the prognostic significance of tumor-associated plasma cells, neutrophils, and eosinophils is less well-defined.

Experimental Design: We computationally processed digital images of hematoxylin and eosin (H&E)–stained sections to identify lymphocytes, plasma cells, neutrophils, and eosinophils in tumor intraepithelial and stromal areas of 934 colorectal cancers in two prospective cohort studies. Multivariable Cox proportional hazards regression was used to compute mortality HR according to cell density quartiles. The spatial patterns of immune cell infiltration were studied using the GTumor:Immune cell function, which estimates the likelihood of any tumor cell in a sample having at least one neighboring immune cell of the specified type within a certain radius. Validation studies were performed on an independent cohort of 570 colorectal cancers.

Results: Immune cell densities measured by the automated classifier demonstrated high correlation with densities both from manual counts and those obtained from an independently trained automated classifier (Spearman’s ρ 0.71–0.96). High densities of stromal lymphocytes and eosinophils were associated with better cancer-specific survival [Ptrend < 0.001; multivariable HR (4th vs 1st quartile of eosinophils), 0.49; 95% confidence interval, 0.34–0.71]. High GTumor:Lymphocyte area under the curve (AUC0,20μm; Ptrend = 0.002) and high GTumor:Eosinophil AUC0,20μm (Ptrend < 0.001) also showed associations with better cancer-specific survival. High stromal eosinophil density was also associated with better cancer-specific survival in the validation cohort (Ptrend < 0.001).

Conclusions: These findings highlight the potential for machine learning assessment of H&E-stained sections to provide robust, quantitative tumor-immune biomarkers for precision medicine.

Kokoelmat
  • Avoin saatavuus [38840]
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen
 

Selaa kokoelmaa

NimekkeetTekijätJulkaisuajatAsiasanatUusimmatSivukartta

Omat tiedot

Kirjaudu sisäänRekisteröidy
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen