Hyppää sisältöön
    • FI
    • ENG
  • FI
  • /
  • EN
OuluREPO – Oulun yliopiston julkaisuarkisto / University of Oulu repository
Näytä viite 
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

Predictive ultra-reliable communication : a survival analysis perspective

Samarakoon, Sumudu; Bennis, Mehdi; Saad, Walid; Debbah, Mérouane (2020-12-25)

 
Avaa tiedosto
nbnfi-fe2021052030743.pdf (700.6Kt)
nbnfi-fe2021052030743_meta.xml (34.36Kt)
nbnfi-fe2021052030743_solr.xml (37.44Kt)
Lataukset: 

URL:
https://doi.org/10.1109/LCOMM.2020.3047446

Samarakoon, Sumudu
Bennis, Mehdi
Saad, Walid
Debbah, Mérouane
Institute of Electrical and Electronics Engineers
25.12.2020

S. Samarakoon, M. Bennis, W. Saad and M. Debbah, "Predictive Ultra-Reliable Communication: A Survival Analysis Perspective," in IEEE Communications Letters, vol. 25, no. 4, pp. 1221-1225, April 2021, doi: 10.1109/LCOMM.2020.3047446

https://rightsstatements.org/vocab/InC/1.0/
© 2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
https://rightsstatements.org/vocab/InC/1.0/
doi:https://doi.org/10.1109/LCOMM.2020.3047446
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi-fe2021052030743
Tiivistelmä

Abstract

Ultra-reliable communication (URC) is a key enabler for supporting immersive and mission-critical 5G applications. Meeting the strict reliability requirements of these applications is challenging due to the absence of accurate statistical models tailored to URC systems. In this letter, the wireless connectivity over dynamic channels is characterized via statistical learning methods. In particular, model-based and data-driven learning approaches are proposed to estimate the non-blocking connectivity statistics over a set of training samples with no knowledge on the dynamic channel statistics. Using principles of survival analysis, the reliability of wireless connectivity is measured in terms of the probability of channel blocking events. Moreover, the maximum transmission duration for a given reliable non-blocking connectivity is predicted in conjunction with the confidence of the inferred transmission duration. Results show that the accuracy of detecting channel blocking events is higher using the model-based method for low to moderate reliability targets requiring low sample complexity. In contrast, the data-driven method yields a higher detection accuracy for higher reliability targets at the cost of 100× sample complexity.

Kokoelmat
  • Avoin saatavuus [37744]
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen
 

Selaa kokoelmaa

NimekkeetTekijätJulkaisuajatAsiasanatUusimmatSivukartta

Omat tiedot

Kirjaudu sisäänRekisteröidy
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen