Hyppää sisältöön
    • FI
    • ENG
  • FI
  • /
  • EN
OuluREPO – Oulun yliopiston julkaisuarkisto / University of Oulu repository
Näytä viite 
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

Opportunities of federated learning in connected, cooperative, and automated industrial systems

Savazzi, Stefano; Nicoli, Monica; Bennis, Mehdi; Kianoush, Sanaz; Barbieri, Luca (2021-03-10)

 
Avaa tiedosto
nbnfi-fe2021051930604.pdf (1.318Mt)
nbnfi-fe2021051930604_meta.xml (35.78Kt)
nbnfi-fe2021051930604_solr.xml (33.77Kt)
Lataukset: 

URL:
https://doi.org/10.1109/MCOM.001.2000200

Savazzi, Stefano
Nicoli, Monica
Bennis, Mehdi
Kianoush, Sanaz
Barbieri, Luca
Institute of Electrical and Electronics Engineers
10.03.2021

S. Savazzi, M. Nicoli, M. Bennis, S. Kianoush and L. Barbieri, "Opportunities of Federated Learning in Connected, Cooperative, and Automated Industrial Systems," in IEEE Communications Magazine, vol. 59, no. 2, pp. 16-21, February 2021, doi: 10.1109/MCOM.001.2000200

https://rightsstatements.org/vocab/InC/1.0/
© 2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
https://rightsstatements.org/vocab/InC/1.0/
doi:https://doi.org/10.1109/MCOM.001.2000200
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi-fe2021051930604
Tiivistelmä

Abstract

Next-generation autonomous and networked industrial systems (i.e., robots, vehicles, drones) have driven advances in ultra-reliable low-laten-cy communications (URLLC) and computing. These networked multi-agent systems require fast, communication-efficient, and distributed machine learning (ML) to provide mission-crit-ical control functionalities. Distributed ML techniques, including federated learning (FL), represent a mushrooming multidisciplinary research area weaving together sensing, communication, and learning. FL enables continual model training in distributed wireless systems: rather than fusing raw data samples at a centralized server, FL leverages a cooperative fusion approach where networked agents, connected via URLLC, act as distributed learners that periodically exchange their locally trained model parameters. This article explores emerging opportunities of FL for the next-generation networked industrial systems. Open problems are discussed, focusing on cooperative driving in connected automated vehicles and collaborative robotics in smart manufacturing.

Kokoelmat
  • Avoin saatavuus [38865]
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen
 

Selaa kokoelmaa

NimekkeetTekijätJulkaisuajatAsiasanatUusimmatSivukartta

Omat tiedot

Kirjaudu sisäänRekisteröidy
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen