Hyppää sisältöön
    • FI
    • ENG
  • FI
  • /
  • EN
OuluREPO – Oulun yliopiston julkaisuarkisto / University of Oulu repository
Näytä viite 
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

Application of deep learning to sphere decoding for large MIMO systems

Nguyen, Nhan Thanh; Lee, Kyungchun; Dai, Huaiyu (2021-05-06)

 
Avaa tiedosto
nbnfi-fe2021122162809.pdf (2.046Mt)
nbnfi-fe2021122162809_meta.xml (30.72Kt)
nbnfi-fe2021122162809_solr.xml (33.94Kt)
Lataukset: 

URL:
https://doi.org/10.1109/TWC.2021.3076527

Nguyen, Nhan Thanh
Lee, Kyungchun
Dai, Huaiyu
Institute of Electrical and Electronics Engineers
06.05.2021

N. T. Nguyen, K. Lee and H. DaiIEEE, "Application of Deep Learning to Sphere Decoding for Large MIMO Systems," in IEEE Transactions on Wireless Communications, vol. 20, no. 10, pp. 6787-6803, Oct. 2021, doi: 10.1109/TWC.2021.3076527

https://rightsstatements.org/vocab/InC/1.0/
© 2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
https://rightsstatements.org/vocab/InC/1.0/
doi:https://doi.org/10.1109/TWC.2021.3076527
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi-fe2021122162809
Tiivistelmä

Abstract

Although the sphere decoder (SD) is a powerful detector for multiple-input multiple-output (MIMO) systems, it has become computationally prohibitive in massive MIMO systems, where a large number of antennas are employed. To overcome this challenge, we propose fast deep learning (DL)-aided SD (FDL-SD) and fast DL-aided K -best SD (KSD, FDL-KSD) algorithms. Therein, the major application of DL is to generate a highly reliable initial candidate to accelerate the search in SD and KSD in conjunction with candidate/layer ordering and early rejection. Compared to existing DL-aided SD schemes, our proposed schemes are more advantageous in both offline training and online application phases. Specifically, unlike existing DL-aided SD schemes, they do not require performing the conventional SD in the training phase. For a 24×24 MIMO system with QPSK, the proposed FDL-SD achieves a complexity reduction of more than 90% without any performance loss compared to conventional SD schemes. For a 32×32 MIMO system with QPSK, the proposed FDL-KSD only requires K=32 to attain the performance of the conventional KSD with K=256, where K is the number of survival paths in KSD. This implies a dramatic improvement in the performance–complexity tradeoff of the proposed FDL-KSD scheme.

Kokoelmat
  • Avoin saatavuus [37580]
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen
 

Selaa kokoelmaa

NimekkeetTekijätJulkaisuajatAsiasanatUusimmatSivukartta

Omat tiedot

Kirjaudu sisäänRekisteröidy
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen