Hyppää sisältöön
    • FI
    • ENG
  • FI
  • /
  • EN
OuluREPO – Oulun yliopiston julkaisuarkisto / University of Oulu repository
Näytä viite 
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

A graphical social topology model for RGB-D Multi-Person Tracking

Gao, Shan; Ye, Qixiang; Liu, Li; Kuijper, Arjan; Ji, Xiangyang (2021-01-05)

 
Avaa tiedosto
nbnfi-fe2021122162759.pdf (9.816Mt)
nbnfi-fe2021122162759_meta.xml (36.27Kt)
nbnfi-fe2021122162759_solr.xml (39.23Kt)
Lataukset: 

URL:
https://doi.org/10.1109/TCSVT.2021.3049397

Gao, Shan
Ye, Qixiang
Liu, Li
Kuijper, Arjan
Ji, Xiangyang
Institute of Electrical and Electronics Engineers
05.01.2021

S. Gao, Q. Ye, L. Liu, A. Kuijper and X. Ji, "A Graphical Social Topology Model for RGB-D Multi-Person Tracking," in IEEE Transactions on Circuits and Systems for Video Technology, vol. 31, no. 11, pp. 4305-4320, Nov. 2021, doi: 10.1109/TCSVT.2021.3049397

https://rightsstatements.org/vocab/InC/1.0/
© 2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
https://rightsstatements.org/vocab/InC/1.0/
doi:https://doi.org/10.1109/TCSVT.2021.3049397
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi-fe2021122162759
Tiivistelmä

Abstract

Tracking multiple persons is a challenging task especially when persons move in groups and occlude one another. Existing research have investigated the problems of group division and segmentation; however, lacking overall person-group topology modeling limits the ability to handle complex person and group dynamics. We propose a Graphical Social Topology (GST) model in the RGB-D data domain, and estimate object group dynamics by jointly modeling the group structure and states of persons using RGB-D topological representation. With our topology representation, moving persons are not only assigned to groups, but also dynamically connected with each other, which enables in-group individuals to be correctively associated and the cohesion of each group to be precisely modeled. Using the learned typical topology pattern and group online update modules, we infer the birth/death and merging/splitting of dynamic groups. With the GST model, the proposed multi-person tracker can naturally facilitate the occlusion problem by treating the occluded object and other in-group members as a whole, while leveraging overall state transition. Experiments on different RGB-D and RGB datasets confirm that the proposed multi-person tracker improves the state-of-the-arts.

Kokoelmat
  • Avoin saatavuus [38358]
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen
 

Selaa kokoelmaa

NimekkeetTekijätJulkaisuajatAsiasanatUusimmatSivukartta

Omat tiedot

Kirjaudu sisäänRekisteröidy
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen