Hyppää sisältöön
    • FI
    • ENG
  • FI
  • /
  • EN
OuluREPO – Oulun yliopiston julkaisuarkisto / University of Oulu repository
Näytä viite 
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

Model selection based algorithm in neonatal chest EIT

Seifnaraghi, Nima; de Gelidi, Serena; Nordebo, Sven; Kallio, Merja; Frerichs, Inez; Tizzard, Andrew; Suo-Palosaari, Maria; Sophocleous, Louiza; van Kaam, Anton H.; Sorantin, Erich; Demosthenous, Andreas; Bayford, Richard H. (2021-01-21)

 
Avaa tiedosto
nbnfi-fe2021122162467.pdf (1.724Mt)
nbnfi-fe2021122162467_meta.xml (57.01Kt)
nbnfi-fe2021122162467_solr.xml (47.80Kt)
Lataukset: 

URL:
https://doi.org/10.1109/TBME.2021.3053463

Seifnaraghi, Nima
de Gelidi, Serena
Nordebo, Sven
Kallio, Merja
Frerichs, Inez
Tizzard, Andrew
Suo-Palosaari, Maria
Sophocleous, Louiza
van Kaam, Anton H.
Sorantin, Erich
Demosthenous, Andreas
Bayford, Richard H.
Institute of Electrical and Electronics Engineers
21.01.2021

N. Seifnaraghi et al., "Model Selection Based Algorithm in Neonatal Chest EIT," in IEEE Transactions on Biomedical Engineering, vol. 68, no. 9, pp. 2752-2763, Sept. 2021, doi: 10.1109/TBME.2021.3053463

https://rightsstatements.org/vocab/InC/1.0/
© 2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
https://rightsstatements.org/vocab/InC/1.0/
doi:https://doi.org/10.1109/TBME.2021.3053463
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi-fe2021122162467
Tiivistelmä

Abstract

This paper presents a new method for selecting a patient specific forward model to compensate for anatomical variations in electrical impedance tomography (EIT) monitoring of neonates. The method uses a combination of shape sensors and absolute reconstruction. It takes advantage of a probabilistic approach which automatically selects the best estimated forward model fit from pre-stored library models. Absolute/static image reconstruction is performed as the core of the posterior probability calculations. The validity and reliability of the algorithm in detecting a suitable model in the presence of measurement noise is studied with simulated and measured data from 11 patients. The paper also demonstrates the potential improvements on the clinical parameters extracted from EIT images by considering a unique case study with a neonate patient undergoing computed tomography imaging as clinical indication prior to EIT monitoring. Two well-known image reconstruction techniques, namely GREIT and tSVD, are implemented to create the final tidal images. The impacts of appropriate model selection on the clinical extracted parameters such as center of ventilation and silent spaces are investigated. The results show significant improvements to the final reconstructed images and more importantly to the clinical EIT parameters extracted from the images that are crucial for decision-making and further interventions.

Kokoelmat
  • Avoin saatavuus [37798]
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen
 

Selaa kokoelmaa

NimekkeetTekijätJulkaisuajatAsiasanatUusimmatSivukartta

Omat tiedot

Kirjaudu sisäänRekisteröidy
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen