Hyppää sisältöön
    • FI
    • ENG
  • FI
  • /
  • EN
OuluREPO – Oulun yliopiston julkaisuarkisto / University of Oulu repository
Näytä viite 
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

A low complexity learning-based channel estimation for OFDM systems with online training

Mei, Kai; Liu, Jun; Zhang, Xiaoying; Cao, Kuo; Rajatheva, Nandana; Wei, Jibo (2021-07-06)

 
Avaa tiedosto
nbnfi-fe2021122162708.pdf (3.607Mt)
nbnfi-fe2021122162708_meta.xml (39.06Kt)
nbnfi-fe2021122162708_solr.xml (33.98Kt)
Lataukset: 

URL:
http://doi.org/10.1109/TCOMM.2021.3095198

Mei, Kai
Liu, Jun
Zhang, Xiaoying
Cao, Kuo
Rajatheva, Nandana
Wei, Jibo
Institute of Electrical and Electronics Engineers
06.07.2021

K. Mei, J. Liu, X. Zhang, K. Cao, N. Rajatheva and J. Wei, "A Low Complexity Learning-Based Channel Estimation for OFDM Systems With Online Training," in IEEE Transactions on Communications, vol. 69, no. 10, pp. 6722-6733, Oct. 2021, doi: 10.1109/TCOMM.2021.3095198

https://rightsstatements.org/vocab/InC/1.0/
© 2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
https://rightsstatements.org/vocab/InC/1.0/
doi:https://doi.org/10.1109/TCOMM.2021.3095198
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi-fe2021122162708
Tiivistelmä

Abstract

In this paper, we devise a highly efficient machine learning-based channel estimation for orthogonal frequency division multiplexing (OFDM) systems, in which the training of the estimator is performed online. A simple learning module is employed for the proposed learning-based estimator. The training process is thus much faster and the required training data is reduced significantly. Besides, a training data construction approach utilizing least square (LS) estimation results is proposed so that the training data can be collected during the data transmission. The feasibility of this novel construction approach is verified by theoretical analysis and simulations. Based on this construction approach, two alternative training data generation schemes are proposed. One scheme transmits additional block pilot symbols to create training data, while the other scheme adopts a decision-directed method and does not require extra pilot overhead. Simulation results show the robustness of the proposed channel estimation method. Furthermore, the proposed method shows better adaptation to practical imperfections compared with the conventional minimum mean-square error (MMSE) channel estimation. It outperforms the existing machine learning-based channel estimation techniques under varying channel conditions.

Kokoelmat
  • Avoin saatavuus [38618]
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen
 

Selaa kokoelmaa

NimekkeetTekijätJulkaisuajatAsiasanatUusimmatSivukartta

Omat tiedot

Kirjaudu sisäänRekisteröidy
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen