Hyppää sisältöön
    • FI
    • ENG
  • FI
  • /
  • EN
OuluREPO – Oulun yliopiston julkaisuarkisto / University of Oulu repository
Näytä viite 
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

Waterdrop removal from hot-rolled steel strip surfaces based on progressive recurrent generative adversarial networks

Luo, Qiwu; Liu, Kexin; Su, Jiaojiao; Yang, Chunhua; Gui, Weihua; Liu, Li; Silven, Olli (2021-07-21)

 
Avaa tiedosto
nbnfi-fe2021110453713.pdf (1.510Mt)
nbnfi-fe2021110453713_meta.xml (42.89Kt)
nbnfi-fe2021110453713_solr.xml (37.59Kt)
Lataukset: 

URL:
https://doi.org/10.1109/TIM.2021.3098825

Luo, Qiwu
Liu, Kexin
Su, Jiaojiao
Yang, Chunhua
Gui, Weihua
Liu, Li
Silven, Olli
Institute of Electrical and Electronics Engineers
21.07.2021

Q. Luo et al., "Waterdrop Removal From Hot-Rolled Steel Strip Surfaces Based on Progressive Recurrent Generative Adversarial Networks," in IEEE Transactions on Instrumentation and Measurement, vol. 70, pp. 1-11, 2021, Art no. 5017011, doi: 10.1109/TIM.2021.3098825

https://rightsstatements.org/vocab/InC/1.0/
© 2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
https://rightsstatements.org/vocab/InC/1.0/
doi:https://doi.org/10.1109/TIM.2021.3098825
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi-fe2021110453713
Tiivistelmä

Abstract

Automated visual inspection (AVI) instrument of surface defects for hot-rolled steel strips is conventionally installed closely before the terminal crimping machine, where the adjacent upstream process is laminar spray cooling. Waterdrops, spreading more or less over the steel strip surface, often trigger false alarms, which is a quite common problem in AVI. Stimulated by the idea of image rain removal in visual enhancement field, this article considers the surface waterdrops, pseudodefects in essence, as a conceptual “rain-like layer.” A targeted method, namely progressive recurrent generative adversarial network (PReGAN), is designed for active waterdrop tracking and fine-grained image inpainting. Meanwhile, a steel surface database (2400 raw images with the resolution of 1000×1000 ) captured from actual hot-rolling line is constructed for the first time for open evaluation of waterdrop removal. The experimental results indicate that images enhanced by the PReGAN perform the most informative and spotless, with 52.2073 peak signal-to-noise ratio (PSNR) and 0.9502 structural similarity (SSIM) index, when compared with four prestigious networks. Assisted by the PReGAN, the false alarms are proved to be reduced at least a half during the application tests using four traditional simple detection methods.

Kokoelmat
  • Avoin saatavuus [40158]
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen
 

Selaa kokoelmaa

NimekkeetTekijätJulkaisuajatAsiasanatUusimmatSivukartta

Omat tiedot

Kirjaudu sisäänRekisteröidy
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen