Hyppää sisältöön
    • FI
    • ENG
  • FI
  • /
  • EN
OuluREPO – Oulun yliopiston julkaisuarkisto / University of Oulu repository
Näytä viite 
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

Communication-efficient and distributed learning over wireless networks : principles and applications

Park, Jihong; Samarakoon, Sumudu; Elgabli, Anis; Kim, Joongheon; Bennis, Mehdi; Kim, Seong-Lyun; Debbah, Mérouane (2021-02-18)

 
Avaa tiedosto
nbnfi-fe2021082343805.pdf (9.398Mt)
nbnfi-fe2021082343805_meta.xml (43.85Kt)
nbnfi-fe2021082343805_solr.xml (38.27Kt)
Lataukset: 

URL:
https://doi.org/10.1109/JPROC.2021.3055679

Park, Jihong
Samarakoon, Sumudu
Elgabli, Anis
Kim, Joongheon
Bennis, Mehdi
Kim, Seong-Lyun
Debbah, Mérouane
Institute of Electrical and Electronics Engineers
18.02.2021

J. Park et al., "Communication-Efficient and Distributed Learning Over Wireless Networks: Principles and Applications," in Proceedings of the IEEE, vol. 109, no. 5, pp. 796-819, May 2021, doi: 10.1109/JPROC.2021.3055679

https://rightsstatements.org/vocab/InC/1.0/
© 2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
https://rightsstatements.org/vocab/InC/1.0/
doi:https://doi.org/10.1109/JPROC.2021.3055679
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi-fe2021082343805
Tiivistelmä

Abstract

Machine learning (ML) is a promising enabler for the fifth-generation (5G) communication systems and beyond. By imbuing intelligence into the network edge, edge nodes can proactively carry out decision-making and, thereby, react to local environmental changes and disturbances while experiencing zero communication latency. To achieve this goal, it is essential to cater for high ML inference accuracy at scale under the time-varying channel and network dynamics, by continuously exchanging fresh data and ML model updates in a distributed way. Taming this new kind of data traffic boils down to improving the communication efficiency of distributed learning by optimizing communication payload types, transmission techniques, and scheduling, as well as ML architectures, algorithms, and data processing methods. To this end, this article aims to provide a holistic overview of relevant communication and ML principles and, thereby, present communication-efficient and distributed learning frameworks with selected use cases.

Kokoelmat
  • Avoin saatavuus [37798]
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen
 

Selaa kokoelmaa

NimekkeetTekijätJulkaisuajatAsiasanatUusimmatSivukartta

Omat tiedot

Kirjaudu sisäänRekisteröidy
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen