Hyppää sisältöön
    • FI
    • ENG
  • FI
  • /
  • EN
OuluREPO – Oulun yliopiston julkaisuarkisto / University of Oulu repository
Näytä viite 
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

Learning meta model for zero- and few-shot face anti-spoofing

Qin, Yunxiao; Zhao, Chenxu; Zhu, Xiangyu; Wang, Zezheng; Yu, Zitong; Fu, Tianyu; Zhou, Feng; Shi, Jingping; Lei, Zhen (2020-04-03)

 
Avaa tiedosto
nbnfi-fe2021091045711.pdf (1.638Mt)
nbnfi-fe2021091045711_meta.xml (46.78Kt)
nbnfi-fe2021091045711_solr.xml (37.48Kt)
Lataukset: 

URL:
https://doi.org/10.1609/aaai.v34i07.6866

Qin, Yunxiao
Zhao, Chenxu
Zhu, Xiangyu
Wang, Zezheng
Yu, Zitong
Fu, Tianyu
Zhou, Feng
Shi, Jingping
Lei, Zhen
Association for the Advancement of Artificial Intelligence
03.04.2020

Qin, Y., Zhao, C., Zhu, X., Wang, Z., Yu, Z., Fu, T., Zhou, F., Shi, J., & Lei, Z. (2020). Learning Meta Model for Zero- and Few-Shot Face Anti-Spoofing. Proceedings of the AAAI Conference on Artificial Intelligence, 34(07), 11916-11923. https://doi.org/10.1609/aaai.v34i07.6866

https://rightsstatements.org/vocab/InC/1.0/
c 2020, Association for the Advancement of Artificial Intelligence (www.aaai.org). All rights reserved. This is the authors accepted manuscript version.
https://rightsstatements.org/vocab/InC/1.0/
doi:https://doi.org/10.1609/aaai.v34i07.6866
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi-fe2021091045711
Tiivistelmä

Abstract

Face anti-spoofing is crucial to the security of face recognition systems. Most previous methods formulate face anti-spoofing as a supervised learning problem to detect various predefined presentation attacks, which need large scale training data to cover as many attacks as possible. However, the trained model is easy to overfit several common attacks and is still vulnerable to unseen attacks. To overcome this challenge, the detector should: 1) learn discriminative features that can generalize to unseen spoofing types from predefined presentation attacks; 2) quickly adapt to new spoofing types by learning from both the predefined attacks and a few examples of the new spoofing types. Therefore, we define face anti-spoofing as a zero- and few-shot learning problem. In this paper, we propose a novel Adaptive Inner-update Meta Face Anti-Spoofing (AIM-FAS) method to tackle this problem through meta-learning. Specifically, AIM-FAS trains a meta-learner focusing on the task of detecting unseen spoofing types by learning from predefined living and spoofing faces and a few examples of new attacks. To assess the proposed approach, we propose several benchmarks for zero- and few-shot FAS. Experiments show its superior performances on the presented benchmarks to existing methods in existing zero-shot FAS protocols.

Kokoelmat
  • Avoin saatavuus [38358]
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen
 

Selaa kokoelmaa

NimekkeetTekijätJulkaisuajatAsiasanatUusimmatSivukartta

Omat tiedot

Kirjaudu sisäänRekisteröidy
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen