Hyppää sisältöön
    • FI
    • ENG
  • FI
  • /
  • EN
OuluREPO – Oulun yliopiston julkaisuarkisto / University of Oulu repository
Näytä viite 
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

Performance analysis on machine learning-based channel estimation

Mei, Kai; Liu, Jun; Zhang, Xiaochen; Rajatheva, Nandana; Wei, Jibo (2021-05-25)

 
Avaa tiedosto
nbnfi-fe2021101450964.pdf (940.2Kt)
nbnfi-fe2021101450964_meta.xml (35.74Kt)
nbnfi-fe2021101450964_solr.xml (32.14Kt)
Lataukset: 

URL:
https://doi.org/10.1109/TCOMM.2021.3083597

Mei, Kai
Liu, Jun
Zhang, Xiaochen
Rajatheva, Nandana
Wei, Jibo
Institute of Electrical and Electronics Engineers
25.05.2021

K. Mei, J. Liu, X. Zhang, N. Rajatheva and J. Wei, "Performance Analysis on Machine Learning-Based Channel Estimation," in IEEE Transactions on Communications, vol. 69, no. 8, pp. 5183-5193, Aug. 2021, doi: 10.1109/TCOMM.2021.3083597

https://rightsstatements.org/vocab/InC/1.0/
© 2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
https://rightsstatements.org/vocab/InC/1.0/
doi:https://doi.org/10.1109/TCOMM.2021.3083597
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi-fe2021101450964
Tiivistelmä

Abstract

Recently, machine learning-based channel estimation has attracted much attention. The performance of machine learning-based estimation has been validated by simulation experiments. However, little attention has been paid to the theoretical performance analysis. In this paper, we investigate the mean square error (MSE) performance of machine learning-based estimation. Hypothesis testing is employed to analyze its MSE upper bound. Furthermore, we build a statistical model for hypothesis testing, which holds when the linear learning module with a low input dimension is used in machine learning-based channel estimation, and derive a clear analytical relation between the size of the training data and performance. Then, we simulate the machine learning-based channel estimation in orthogonal frequency division multiplexing (OFDM) systems to verify our analysis results. Finally, the design considerations for the situation where only limited training data is available are discussed. In this situation, our analysis results can be applied to assess the performance and support the design of machine learning-based channel estimation.

Kokoelmat
  • Avoin saatavuus [37688]
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen
 

Selaa kokoelmaa

NimekkeetTekijätJulkaisuajatAsiasanatUusimmatSivukartta

Omat tiedot

Kirjaudu sisäänRekisteröidy
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen