Hyppää sisältöön
    • FI
    • ENG
  • FI
  • /
  • EN
OuluREPO – Oulun yliopiston julkaisuarkisto / University of Oulu repository
Näytä viite 
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

Joint client scheduling and resource allocation under channel uncertainty in federated learning

Wadu, Madhusanka Manimel; Samarakoon, Sumudu; Bennis, Mehdi (2021-06-11)

 
Avaa tiedosto
nbnfi-fe2021101150547.pdf (2.189Mt)
nbnfi-fe2021101150547_meta.xml (33.06Kt)
nbnfi-fe2021101150547_solr.xml (32.52Kt)
Lataukset: 

URL:
https://doi.org/10.1109/TCOMM.2021.3088528

Wadu, Madhusanka Manimel
Samarakoon, Sumudu
Bennis, Mehdi
Institute of Electrical and Electronics Engineers
11.06.2021

M. M. Wadu, S. Samarakoon and M. Bennis, "Joint Client Scheduling and Resource Allocation Under Channel Uncertainty in Federated Learning," in IEEE Transactions on Communications, vol. 69, no. 9, pp. 5962-5974, Sept. 2021, doi: 10.1109/TCOMM.2021.3088528

https://rightsstatements.org/vocab/InC/1.0/
© 2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
https://rightsstatements.org/vocab/InC/1.0/
doi:https://doi.org/10.1109/TCOMM.2021.3088528
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi-fe2021101150547
Tiivistelmä

Abstract

The performance of federated learning (FL) over wireless networks depend on the reliability of the client-server connectivity and clients’ local computation capabilities. In this article we investigate the problem of client scheduling and resource block (RB) allocation to enhance the performance of model training using FL, over a pre-defined training duration under imperfect channel state information (CSI) and limited local computing resources. First, we analytically derive the gap between the training losses of FL with clients scheduling and a centralized training method for a given training duration. Then, we formulate the gap of the training loss minimization over client scheduling and RB allocation as a stochastic optimization problem and solve it using Lyapunov optimization. A Gaussian process regression-based channel prediction method is leveraged to learn and track the wireless channel, in which, the clients’ CSI predictions and computing power are incorporated into the scheduling decision. Using an extensive set of simulations, we validate the robustness of the proposed method under both perfect and imperfect CSI over an array of diverse data distributions. Results show that the proposed method reduces the gap of the training accuracy loss by up to 40.7% compared to state-of-the-art client scheduling and RB allocation methods.

Kokoelmat
  • Avoin saatavuus [37864]
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen
 

Selaa kokoelmaa

NimekkeetTekijätJulkaisuajatAsiasanatUusimmatSivukartta

Omat tiedot

Kirjaudu sisäänRekisteröidy
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen