Hyppää sisältöön
    • FI
    • ENG
  • FI
  • /
  • EN
OuluREPO – Oulun yliopiston julkaisuarkisto / University of Oulu repository
Näytä viite 
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

A novel multi-level pyramid co-variance operators for estimation of personality traits and job screening scores

Telli, Hichem; Sbaa, Salim; Bekhouche, Salah Eddine; Dornaika, Fadi; Taleb-Ahmed, Abdelmalik; Bordallo López, Miguel (2021-06-30)

 
Avaa tiedosto
nbnfi-fe2021100750158.pdf (1.186Mt)
nbnfi-fe2021100750158_meta.xml (38.54Kt)
nbnfi-fe2021100750158_solr.xml (34.87Kt)
Lataukset: 

URL:
https://doi.org/10.18280/ts.380301

Telli, Hichem
Sbaa, Salim
Bekhouche, Salah Eddine
Dornaika, Fadi
Taleb-Ahmed, Abdelmalik
Bordallo López, Miguel
International Information and Engineering Technology Association
30.06.2021

Telli, H., Sbaa, S., Bekhouche, S.E., Dornaika, F., Taleb-Ahmed, A., López, M.B. (2021). A novel multi-level Pyramid Co-Variance operators for estimation of personality traits and job screening scores. Traitement du Signal, Vol. 38, No. 3, pp. 539-546. https://doi.org/10.18280/ts.380301

https://rightsstatements.org/vocab/InC/1.0/
All articles in Traitement du Signal are published under open access. IIETA will hold copyright on all papers, while the author will maintain all other rights including patents and the right to use and reproduce material.
https://rightsstatements.org/vocab/InC/1.0/
doi:https://doi.org/10.18280/ts.380301
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi-fe2021100750158
Tiivistelmä

Abstract

Recently, automatic personality analysis is becoming an interesting topic for computer vision. Many attempts have been proposed to solve this problem using time-based sequence information. In this paper, we present a new framework for estimating the Big-Five personality traits and job candidate screening variable from video sequences. The framework consists of two parts: (1) the use of Pyramid Multi-level (PML) to extract raw facial textures at different scales and levels; (2) the extension of the Covariance Descriptor (COV) to fuse different local texture features of the face image such as Local Binary Patterns (LBP), Local Directional Pattern (LDP), Binarized Statistical Image Features (BSIF), and Local Phase Quantization (LPQ). Therefore, the COV descriptor uses the textures of PML face parts to generate rich low-level face features that are encoded using concatenation of all PML blocks in a feature vector. Finally, the entire video sequence is represented by aggregating these frame vectors and extracting the most relevant features. The exploratory results on the ChaLearn LAP APA2016 dataset compare well with state-of-the-art methods including deep learning-based methods.

Kokoelmat
  • Avoin saatavuus [37572]
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen
 

Selaa kokoelmaa

NimekkeetTekijätJulkaisuajatAsiasanatUusimmatSivukartta

Omat tiedot

Kirjaudu sisäänRekisteröidy
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen