Hyppää sisältöön
    • FI
    • ENG
  • FI
  • /
  • EN
OuluREPO – Oulun yliopiston julkaisuarkisto / University of Oulu repository
Näytä viite 
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

Forecasting wireless network traffic and channel utilization using real network/physical layer data

Sone, Su Pyae; Lehtomäki, Janne; Khan, Zaheer; Umebayashi, Kenta (2021-07-28)

 
Avaa tiedosto
nbnfi-fe2021102151922.pdf (708.8Kt)
nbnfi-fe2021102151922_meta.xml (36.58Kt)
nbnfi-fe2021102151922_solr.xml (34.94Kt)
Lataukset: 

URL:
https://doi.org/10.1109/EuCNC/6GSummit51104.2021.9482498

Sone, Su Pyae
Lehtomäki, Janne
Khan, Zaheer
Umebayashi, Kenta
Institute of Electrical and Electronics Engineers
28.07.2021

S. P. Sone, J. Lehtomäki, Z. Khan and K. Umebayashi, "Forecasting Wireless Network Traffic and Channel Utilization Using Real Network/Physical layer Data," 2021 Joint European Conference on Networks and Communications & 6G Summit (EuCNC/6G Summit), 2021, pp. 31-36, doi: 10.1109/EuCNC/6GSummit51104.2021.9482498

https://rightsstatements.org/vocab/InC/1.0/
© 2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
https://rightsstatements.org/vocab/InC/1.0/
doi:https://doi.org/10.1109/EuCNC/6GSummit51104.2021.9482498
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi-fe2021102151922
Tiivistelmä

Abstract

Prediction of wireless network parameters, such as traffic (TU) and channel utilization (CU) data, can help in proactive resource allocation to handle the increasing amount of devices in an enterprise network. In this work, we examined the medium-to-long-scale forecasting of TU and CU data collected from an enterprise network using classical methods, such as Holt-Winters, Seasonal ARIMA (SARIMA), and machine learning methods, such as long short-term memory (LSTM) and gated recurrent unit (GRU). We also improved the performance of conventional LSTM and GRU for time series forecasting by proposing features-like grid training data structure which uses older historical data as features. The wireless network time series pre-processing methods and the verification methods are presented as time series analysis steps. The model hyper-parameters selections process and the comparison of different forecasting models are also provided. This work has proven that physical layer data has more predictive power in time series forecasting aspect with all forecasting models.

Kokoelmat
  • Avoin saatavuus [38840]
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen
 

Selaa kokoelmaa

NimekkeetTekijätJulkaisuajatAsiasanatUusimmatSivukartta

Omat tiedot

Kirjaudu sisäänRekisteröidy
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen