Hyppää sisältöön
    • FI
    • ENG
  • FI
  • /
  • EN
OuluREPO – Oulun yliopiston julkaisuarkisto / University of Oulu repository
Näytä viite 
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

Data balancing improves self-admitted technical debt detection

Sridharan, Murali; Mäntylä, Mika; Rantala, Leevi; Claes, Maelick (2021-06-28)

 
Avaa tiedosto
nbnfi-fe2021102151872.pdf (269.1Kt)
nbnfi-fe2021102151872_meta.xml (37.78Kt)
nbnfi-fe2021102151872_solr.xml (35.04Kt)
Lataukset: 

URL:
https://doi.org/10.1109/MSR52588.2021.00048

Sridharan, Murali
Mäntylä, Mika
Rantala, Leevi
Claes, Maelick
Institute of Electrical and Electronics Engineers
28.06.2021

M. Sridharan, M. Mantyla, L. Rantala and M. Claes, "Data Balancing Improves Self-Admitted Technical Debt Detection," 2021 IEEE/ACM 18th International Conference on Mining Software Repositories (MSR), 2021, pp. 358-368, doi: 10.1109/MSR52588.2021.00048

https://rightsstatements.org/vocab/InC/1.0/
© 2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
https://rightsstatements.org/vocab/InC/1.0/
doi:https://doi.org/10.1109/MSR52588.2021.00048
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi-fe2021102151872
Tiivistelmä

Abstract

A high imbalance exists between technical debt and non-technical debt source code comments. Such imbalance affects Self-Admitted Technical Debt (SATD) detection performance, and existing literature lacks empirical evidence on the choice of balancing technique. In this work, we evaluate the impact of multiple balancing techniques, including Data level, Classifier level, and Hybrid, for SATD detection in Within-Project and Cross-Project setup. Our results show that the Data level balancing technique SMOTE or Classifier level Ensemble approaches Random Forest or XGBoost are reasonable choices depending on whether the goal is to maximize Precision, Recall, F1, or AUC-ROC. We compared our best-performing model with the previous SATD detection benchmark (cost-sensitive Convolution Neural Network). Interestingly the top-performing XGBoost with SMOTE sampling improved the Within-project F1 score by 10% but fell short in Cross-Project set up by 9%. This supports the higher generalization capability of deep learning in Cross-Project SATD detection, yet while working within individual projects, classical machine learning algorithms can deliver better performance. We also evaluate and quantify the impact of duplicate source code comments in SATD detection performance. Finally, we employ SHAP and discuss the interpreted SATD features. We have included the replication package1 and shared a web-based SATD prediction tool2 with the balancing techniques in this study.

Kokoelmat
  • Avoin saatavuus [38320]
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen
 

Selaa kokoelmaa

NimekkeetTekijätJulkaisuajatAsiasanatUusimmatSivukartta

Omat tiedot

Kirjaudu sisäänRekisteröidy
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen