Hyppää sisältöön
    • FI
    • ENG
  • FI
  • /
  • EN
OuluREPO – Oulun yliopiston julkaisuarkisto / University of Oulu repository
Näytä viite 
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

Facial-video-based physiological signal measurement : recent advances and affective applications

Yu, Zitong; Li, Xiaobai; Zhao, Guoying (2021-10-27)

 
Avaa tiedosto
nbnfi-fe2021120959958.pdf (1.244Mt)
nbnfi-fe2021120959958_meta.xml (33.27Kt)
nbnfi-fe2021120959958_solr.xml (33.58Kt)
Lataukset: 

URL:
https://doi.org/10.1109/MSP.2021.3106285

Yu, Zitong
Li, Xiaobai
Zhao, Guoying
Institute of Electrical and Electronics Engineers
27.10.2021

Z. Yu, X. Li and G. Zhao, "Facial-Video-Based Physiological Signal Measurement: Recent advances and affective applications," in IEEE Signal Processing Magazine, vol. 38, no. 6, pp. 50-58, Nov. 2021, doi: 10.1109/MSP.2021.3106285

https://rightsstatements.org/vocab/InC/1.0/
© 2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
https://rightsstatements.org/vocab/InC/1.0/
doi:https://doi.org/10.1109/MSP.2021.3106285
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi-fe2021120959958
Tiivistelmä

Abstract

Monitoring physiological changes [e.g., heart rate (HR), respiration, and HR variability (HRV)] is important for measuring human emotions. Physiological responses are more reliable and harder to alter compared to explicit behaviors (such as facial expressions and speech), but they require special contact sensors to obtain. Research in the last decade has shown that photoplethysmography (PPG) signals can be remotely measured (rPPG) from facial videos under ambient light, from which physiological changes can be extracted. This promising finding has attracted much interest from researchers, and the field of rPPG measurement has been growing fast. In this article, we review current progress on intelligent signal processing approaches for rPPG measurement, including earlier works on unsupervised approaches and recently proposed supervised models, benchmark data sets, and performance evaluation. We also review studies on rPPG-based affective applications and compare them with other affective computing modalities. We conclude this article by emphasizing the current main challenges and highlighting future directions.

Kokoelmat
  • Avoin saatavuus [37647]
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen
 

Selaa kokoelmaa

NimekkeetTekijätJulkaisuajatAsiasanatUusimmatSivukartta

Omat tiedot

Kirjaudu sisäänRekisteröidy
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen