Comparison of impact toughness in simulated coarse-grained heat-affected zone of Al-deoxidized and Ti-deoxidized offshore steels
Tervo, Henri; Kaijalainen, Antti; Javaheri, Vahid; Ali, Mohammed; Alatarvas, Tuomas; Mehtonen, Mikko; Anttila, Severi; Kömi, Jukka (2021-11-05)
Tervo, H.; Kaijalainen, A.; Javaheri, V.; Ali, M.; Alatarvas, T.; Mehtonen, M.; Anttila, S.; Kömi, J. Comparison of Impact Toughness in Simulated Coarse-Grained Heat-Affected Zone of Al-Deoxidized and Ti-Deoxidized Offshore Steels. Metals 2021, 11, 1783. https://doi.org/10.3390/met11111783
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
https://creativecommons.org/licenses/by/4.0/
https://urn.fi/URN:NBN:fi-fe2021121660962
Tiivistelmä
Abstract
The presence of acicular ferrite (AF) in the heat-affected zone (HAZ) of steels used offshore is generally seen as beneficial for toughness. In this study, the effects of varying fractions of AF (0–49 vol.%) were assessed in the simulated, unaltered and coarse-grained heat-affected zones (CGHAZ) of three experimental steels. Two steels were deoxidized using Ti and one using Al. The characterization was carried out by using electron microscopy, energy-dispersive X-ray spectrometry, electron backscatter diffraction and X-ray diffraction. The fraction of AF varied with the heat input and cooling time applied in the Gleeble thermomechanical simulator. AF was present in one of the Ti-deoxidized steels with all the applied cooling times, and its fraction increased with increasing cooling time. However, in other materials, only a small fraction (13–22%) of AF was present and only when the longest cooling time was applied. The impact toughness of the simulated specimens was evaluated using instrumented Charpy V-notch testing. Contrary to the assumption, the highest impact toughness was obtained in the conventional Al-deoxidized steel with little or no AF in the microstructure, while the variants with the highest fraction of AF had the lowest impact toughness. It was concluded that the coarser microstructural and inclusion features of the steels with AF and also the fraction of AF may not have been great enough to improve the CGHAZ toughness of the steels investigated.
Kokoelmat
- Avoin saatavuus [34589]