Hyppää sisältöön
    • FI
    • ENG
  • FI
  • /
  • EN
OuluREPO – Oulun yliopiston julkaisuarkisto / University of Oulu repository
Näytä viite 
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

Semi-supervised natural face de-occlusion

Cai, Jiancheng; Han, Hu; Cui, Jiyun; Chen, Jie; Liu, Li; Zhou, S. Kevin (2020-09-14)

 
Avaa tiedosto
nbnfi-fe2021042611783.pdf (4.135Mt)
nbnfi-fe2021042611783_meta.xml (38.59Kt)
nbnfi-fe2021042611783_solr.xml (37.44Kt)
Lataukset: 

URL:
https://doi.org/10.1109/TIFS.2020.3023793

Cai, Jiancheng
Han, Hu
Cui, Jiyun
Chen, Jie
Liu, Li
Zhou, S. Kevin
Institute of Electrical and Electronics Engineers
14.09.2020

J. Cai, H. Han, J. Cui, J. Chen, L. Liu and S. K. Zhou, "Semi-Supervised Natural Face De-Occlusion," in IEEE Transactions on Information Forensics and Security, vol. 16, pp. 1044-1057, 2021, doi: 10.1109/TIFS.2020.3023793

https://rightsstatements.org/vocab/InC/1.0/
© 2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
https://rightsstatements.org/vocab/InC/1.0/
doi:https://doi.org/10.1109/TIFS.2020.3023793
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi-fe2021042611783
Tiivistelmä

Abstract

Occlusions are often present in face images in the wild, e.g., under video surveillance and forensic scenarios. Existing face de-occlusion methods are limited as they require the knowledge of an occlusion mask. To overcome this limitation, we propose in this paper a new generative adversarial network (named OA-GAN) for natural face de-occlusion without an occlusion mask, enabled by learning in a semi-supervised fashion using (i) paired images with known masks of artificial occlusions and (ii) natural images without occlusion masks. The generator of our approach first predicts an occlusion mask, which is used for filtering the feature maps of the input image as a semantic cue for de-occlusion. The filtered feature maps are then used for face completion to recover a non-occluded face image. The initial occlusion mask prediction might not be accurate enough, but it gradually converges to the accurate one because of the adversarial loss we use to perceive which regions in a face image need to be recovered. The discriminator of our approach consists of an adversarial loss, distinguishing the recovered face images from natural face images, and an attribute preserving loss, ensuring that the face image after de-occlusion can retain the attributes of the input face image. Experimental evaluations on the widely used CelebA dataset and a dataset with natural occlusions we collected show that the proposed approach can outperform the state of the art methods in natural face de-occlusion.

Kokoelmat
  • Avoin saatavuus [37920]
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen
 

Selaa kokoelmaa

NimekkeetTekijätJulkaisuajatAsiasanatUusimmatSivukartta

Omat tiedot

Kirjaudu sisäänRekisteröidy
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen