Integrating LEO satellite and UAV relaying via reinforcement learning for non-terrestrial networks
Lee, Ju-Hyung; Park, Jihong; Bennis, Mehdi; Ko, Young-Chai (2021-02-15)
J. -H. Lee, J. Park, M. Bennis and Y. -C. Ko, "Integrating LEO Satellite and UAV Relaying via Reinforcement Learning for Non-Terrestrial Networks," GLOBECOM 2020 - 2020 IEEE Global Communications Conference, Taipei, Taiwan, 2020, pp. 1-6, doi: 10.1109/GLOBECOM42002.2020.9348105
© 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
https://rightsstatements.org/vocab/InC/1.0/
https://urn.fi/URN:NBN:fi-fe202102255938
Tiivistelmä
Abstract
A mega-constellation of low-earth orbit (LEO) satellites has the potential to enable long-range communication with low latency. Integrating this with burgeoning unmanned aerial vehicle (UAV) assisted non-terrestrial networks will be a disruptive solution for beyond 5G systems provisioning large-scale three-dimensional connectivity. In this article, we study the problem of forwarding packets between two faraway ground terminals, through an LEO satellite selected from an orbiting constellation and a mobile high-altitude platform (HAP) such as a fixed-wing UAV. To maximize the end-to-end data rate, the satellite association and HAP location should be optimized, which is challenging due to a huge number of orbiting satellites and the resulting time-varying network topology. We tackle this problem using deep reinforcement learning (DRL) with a novel action dimension reduction technique. Simulation results corroborate that our proposed method achieves up to 5.74x higher average data rate compared to a direct communication baseline without SAT and HAP.
Kokoelmat
- Avoin saatavuus [34343]