Hyppää sisältöön
    • FI
    • ENG
  • FI
  • /
  • EN
OuluREPO – Oulun yliopiston julkaisuarkisto / University of Oulu repository
Näytä viite 
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

Fiction popularity prediction based on emotion analysis

Wang, Xing; Zhang, Shouhua; Smetannikov, Ivan (2020-10-31)

 
Avaa tiedosto
nbnfi-fe202101262673.pdf (668.2Kt)
nbnfi-fe202101262673_meta.xml (29.84Kt)
nbnfi-fe202101262673_solr.xml (27.54Kt)
Lataukset: 

URL:
https://doi.org/10.1145/3437802.3437831

Wang, Xing
Zhang, Shouhua
Smetannikov, Ivan
Association for Computing Machinery
31.10.2020

Xing Wang, Shouhua Zhang, and Ivan Smetannikov. 2020. Fiction Popularity Prediction Based on Emotion Analysis. In 2020 International Conference on Control, Robotics and Intelligent System (CCRIS 2020). Association for Computing Machinery, New York, NY, USA, 169–175. DOI:https://doi.org/10.1145/3437802.3437831

https://rightsstatements.org/vocab/InC/1.0/
© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM. This is the author's version of the work. It is posted here for your personal use. Not for redistribution. The definitive Version of Record was published in CCRIS 2020: 2020 International Conference on Control, Robotics and Intelligent System, https://doi.org/10.1145/3437802.3437831.
https://rightsstatements.org/vocab/InC/1.0/
doi:https://doi.org/10.1145/3437802.3437831
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi-fe202101262673
Tiivistelmä

Abstract

In addition to bringing us knowledge, books also bring us emotional experiences. How do the emotional fluctuations brought by books affect readers’ evaluation of them? What is the difference in emotional fluctuations between books of different popularity? In this paper, we model and analyse the emotional fluctuations of different fiction books with different popularity and study the feasibility of predicting the popularity of fiction books using emotional fluctuations and recurrent neural networks. A new dataset is also generated to support this research and other related researches. Our proposed method obtained the best accuracy of 73.4% for predicting the popularity of fiction books and 41.4% for predicting genres. Some interesting data insights are also extracted from the dataset.

Kokoelmat
  • Avoin saatavuus [37744]
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen
 

Selaa kokoelmaa

NimekkeetTekijätJulkaisuajatAsiasanatUusimmatSivukartta

Omat tiedot

Kirjaudu sisäänRekisteröidy
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen