Hyppää sisältöön
    • FI
    • ENG
  • FI
  • /
  • EN
OuluREPO – Oulun yliopiston julkaisuarkisto / University of Oulu repository
Näytä viite 
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

Robust self-protection against application-layer (D)DoS attacks in SDN environment

Benzaïd, Chafika; Boukhalfa, Mohammed; Taleb, Tarik (2020-06-19)

 
Avaa tiedosto
nbnfi-fe202102195363.pdf (972.4Kt)
nbnfi-fe202102195363_meta.xml (30.40Kt)
nbnfi-fe202102195363_solr.xml (30.59Kt)
Lataukset: 

URL:
https://doi.org/10.1109/WCNC45663.2020.9120472

Benzaïd, Chafika
Boukhalfa, Mohammed
Taleb, Tarik
Institute of Electrical and Electronics Engineers
19.06.2020

C. Benzaïd, M. Boukhalfa and T. Taleb, "Robust Self-Protection Against Application-Layer (D)DoS Attacks in SDN Environment," 2020 IEEE Wireless Communications and Networking Conference (WCNC), Seoul, Korea (South), 2020, pp. 1-6, doi: 10.1109/WCNC45663.2020.9120472

https://rightsstatements.org/vocab/InC/1.0/
© 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
https://rightsstatements.org/vocab/InC/1.0/
doi:https://doi.org/10.1109/WCNC45663.2020.9120472
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi-fe202102195363
Tiivistelmä

Abstract

The expected high bandwidth of 5G and the envisioned massive number of connected devices will open the door to increased and sophisticated attacks, such as application-layer DDoS attacks. Application-layer DDoS attacks are complex to detect and mitigate due to their stealthy nature and their ability to mimic genuine behavior. In this work, we propose a robust application-layer DDoS self-protection framework that empowers a fully autonomous detection and mitigation of the application-layer DDoS attacks leveraging on Deep Learning (DL) and SDN enablers. The DL models have been proven vulnerable to adversarial attacks, which aim to fool the DL model into taking wrong decisions. To overcome this issue, we build a DL-based application-layer DDoS detection model that is robust to adversarial examples. The performance results show the effectiveness of the proposed framework in protecting against application-layer DDoS attacks even in the presence of adversarial attacks.

Kokoelmat
  • Avoin saatavuus [37575]
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen
 

Selaa kokoelmaa

NimekkeetTekijätJulkaisuajatAsiasanatUusimmatSivukartta

Omat tiedot

Kirjaudu sisäänRekisteröidy
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen