Hyppää sisältöön
    • FI
    • ENG
  • FI
  • /
  • EN
OuluREPO – Oulun yliopiston julkaisuarkisto / University of Oulu repository
Näytä viite 
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

Three-layer approach to detect anomalies in industrial environments based on machine learning

Gutierrez-Rojas, Daniel; Ullah, Mehar; Christou, Ioannis T.; Almeida, Gustavo; Nardelli, Pedro; Carrillo, Dick; Sant’Ana, Jean M.; Alves, Hirley; Dzaferagic, Merim; Chiumento, Alessandro; Kalalas, Charalampos (2020-12-04)

 
Avaa tiedosto
nbnfi-fe202102195378.pdf (892.6Kt)
nbnfi-fe202102195378_meta.xml (53.47Kt)
nbnfi-fe202102195378_solr.xml (37.87Kt)
Lataukset: 

URL:
https://doi.org/10.1109/ICPS48405.2020.9274780

Gutierrez-Rojas, Daniel
Ullah, Mehar
Christou, Ioannis T.
Almeida, Gustavo
Nardelli, Pedro
Carrillo, Dick
Sant’Ana, Jean M.
Alves, Hirley
Dzaferagic, Merim
Chiumento, Alessandro
Kalalas, Charalampos
Institute of Electrical and Electronics Engineers
04.12.2020

D. Gutierrez-Rojas et al., "Three-layer Approach to Detect Anomalies in Industrial Environments based on Machine Learning," 2020 IEEE Conference on Industrial Cyberphysical Systems (ICPS), Tampere, Finland, 2020, pp. 250-256, doi: 10.1109/ICPS48405.2020.9274780

https://rightsstatements.org/vocab/InC/1.0/
© 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
https://rightsstatements.org/vocab/InC/1.0/
doi:https://doi.org/10.1109/ICPS48405.2020.9274780
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi-fe202102195378
Tiivistelmä

Abstract

This paper introduces a general approach to design a tailored solution to detect rare events in different industrial applications based on Internet of Things (IoT) networks and machine learning algorithms. We propose a general framework based on three layers (physical, data and decision) that defines the possible designing options so that the rare events/anomalies can be detected ultra-reliably. This general framework is then applied in a well-known benchmark scenario, namely Tennessee Eastman Process. We then analyze this benchmark under three threads related to data processes: acquisition, fusion and analytics. Our numerical results indicate that: (i) event-driven data acquisition can significantly decrease the number of samples while filtering measurement noise, (ii) mutual information data fusion method can significantly decrease the variable spaces and (iii) quantitative association rule mining method for data analytics is effective for the rare event detection, identification and diagnosis. These results indicates the benefits of an integrated solution that jointly considers the different levels of data processing following the proposed general three layer framework, including details of the communication network and computing platform to be employed.

Kokoelmat
  • Avoin saatavuus [38671]
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen
 

Selaa kokoelmaa

NimekkeetTekijätJulkaisuajatAsiasanatUusimmatSivukartta

Omat tiedot

Kirjaudu sisäänRekisteröidy
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen