Hyppää sisältöön
    • FI
    • ENG
  • FI
  • /
  • EN
OuluREPO – Oulun yliopiston julkaisuarkisto / University of Oulu repository
Näytä viite 
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

AutoHR : a strong end-to-end baseline for remote heart rate measurement with neural searching

Yu, Zitong; Li, Xiaobai; Niu, Xuesong; Shi, Jingang; Zhao, Guoying (2020-07-06)

 
Avaa tiedosto
nbnfi-fe202102195384.pdf (5.855Mt)
nbnfi-fe202102195384_meta.xml (38.88Kt)
nbnfi-fe202102195384_solr.xml (35.17Kt)
Lataukset: 

URL:
https://doi.org/10.1109/LSP.2020.3007086

Yu, Zitong
Li, Xiaobai
Niu, Xuesong
Shi, Jingang
Zhao, Guoying
Institute of Electrical and Electronics Engineers
06.07.2020

Z. Yu, X. Li, X. Niu, J. Shi and G. Zhao, "AutoHR: A Strong End-to-End Baseline for Remote Heart Rate Measurement With Neural Searching," in IEEE Signal Processing Letters, vol. 27, pp. 1245-1249, 2020, doi: 10.1109/LSP.2020.3007086

https://rightsstatements.org/vocab/InC/1.0/
© 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
https://rightsstatements.org/vocab/InC/1.0/
doi:https://doi.org/10.1109/LSP.2020.3007086
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi-fe202102195384
Tiivistelmä

Abstract

Remote photoplethysmography (rPPG), which aims at measuring heart activities without any contact, has great potential in many applications (e.g., remote healthcare). Existing end-to-end rPPG and heart rate (HR) measurement methods from facial videos are vulnerable to the less-constrained scenarios (e.g., with head movement and bad illumination). In this letter, we explore the reason why existing end-to-end networks perform poorly in challenging conditions and establish a strong end-to-end baseline (AutoHR) for remote HR measurement with neural architecture search (NAS). The proposed method includes three parts: 1) a powerful searched backbone with novel Temporal Difference Convolution (TDC), intending to capture intrinsic rPPG-aware clues between frames; 2) a hybrid loss function considering constraints from both time and frequency domains; and 3) spatio-temporal data augmentation strategies for better representation learning. Comprehensive experiments are performed on three benchmark datasets, and we achieved superior performance on both intra- and cross-dataset testings.

Kokoelmat
  • Avoin saatavuus [37647]
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen
 

Selaa kokoelmaa

NimekkeetTekijätJulkaisuajatAsiasanatUusimmatSivukartta

Omat tiedot

Kirjaudu sisäänRekisteröidy
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen