Hyppää sisältöön
    • FI
    • ENG
  • FI
  • /
  • EN
OuluREPO – Oulun yliopiston julkaisuarkisto / University of Oulu repository
Näytä viite 
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

Video-based remote physiological measurement via cross-verified feature disentangling

Niu, Xuesong; Yu, Zitong; Han, Hu; Li, Xiaobai; Shan, Shiguang; Zhao, Guoying (2020-11-03)

 
Avaa tiedosto
nbnfi-fe202102195382.pdf (1.466Mt)
nbnfi-fe202102195382_meta.xml (49.32Kt)
nbnfi-fe202102195382_solr.xml (39.82Kt)
Lataukset: 

URL:
https://doi.org/10.1007/978-3-030-58536-5_18

Niu, Xuesong
Yu, Zitong
Han, Hu
Li, Xiaobai
Shan, Shiguang
Zhao, Guoying
Springer Nature
03.11.2020

Niu X., Yu Z., Han H., Li X., Shan S., Zhao G. (2020) Video-Based Remote Physiological Measurement via Cross-Verified Feature Disentangling. In: Vedaldi A., Bischof H., Brox T., Frahm JM. (eds) Computer Vision – ECCV 2020. ECCV 2020. Lecture Notes in Computer Science, vol 12347. Springer, Cham. https://doi.org/10.1007/978-3-030-58536-5_18

https://rightsstatements.org/vocab/InC/1.0/
© Springer Nature Switzerland AG 2020. This is a post-peer-review, pre-copyedit version of an article published in Computer Vision – ECCV 2020. The final authenticated version is available online at: https://doi.org/10.1007/978-3-030-58536-5_18.
https://rightsstatements.org/vocab/InC/1.0/
doi:https://doi.org/10.1007/978-3-030-58536-5_18
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi-fe202102195382
Tiivistelmä

Abstract

Remote physiological measurements, e.g., remote photoplethysmography (rPPG) based heart rate (HR), heart rate variability (HRV) and respiration frequency (RF) measuring, are playing more and more important roles under the application scenarios where contact measurement is inconvenient or impossible. Since the amplitude of the physiological signals is very small, they can be easily affected by head movements, lighting conditions, and sensor diversities. To address these challenges, we propose a cross-verified feature disentangling strategy to disentangle the physiological features with non-physiological representations, and then use the distilled physiological features for robust multi-task physiological measurements. We first transform the input face videos into a multi-scale spatial-temporal map (MSTmap), which can suppress the irrelevant background and noise features while retaining most of the temporal characteristics of the periodic physiological signals. Then we take pairwise MSTmaps as inputs to an autoencoder architecture with two encoders (one for physiological signals and the other for non-physiological information) and use a cross-verified scheme to obtain physiological features disentangled with the non-physiological features. The disentangled features are finally used for the joint prediction of multiple physiological signals like average HR values and rPPG signals. Comprehensive experiments on different large-scale public datasets of multiple physiological measurement tasks as well as the cross-database testing demonstrate the robustness of our approach.

Kokoelmat
  • Avoin saatavuus [37920]
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen
 

Selaa kokoelmaa

NimekkeetTekijätJulkaisuajatAsiasanatUusimmatSivukartta

Omat tiedot

Kirjaudu sisäänRekisteröidy
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen