Hyppää sisältöön
    • FI
    • ENG
  • FI
  • /
  • EN
OuluREPO – Oulun yliopiston julkaisuarkisto / University of Oulu repository
Näytä viite 
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

Multi-view deep features for robust facial kinship verification

Laiadi, Oualid; Ouamane, Abdelmalik; Benakcha, Abdelhamid; Taleb-Ahmed, Abdelmalik; Hadid, Abdenour (2021-01-18)

 
Avaa tiedosto
nbnfi-fe202103258326.pdf (1019.Kt)
nbnfi-fe202103258326_meta.xml (36.00Kt)
nbnfi-fe202103258326_solr.xml (34.59Kt)
Lataukset: 

URL:
https://doi.org/10.1109/FG47880.2020.00118

Laiadi, Oualid
Ouamane, Abdelmalik
Benakcha, Abdelhamid
Taleb-Ahmed, Abdelmalik
Hadid, Abdenour
Institute of Electrical and Electronics Engineers
18.01.2021

O. Laiadi, A. Ouamane, A. Benakcha, A. Taleb-Ahmed and A. Hadid, "Multi-view Deep Features for Robust Facial Kinship Verification," 2020 15th IEEE International Conference on Automatic Face and Gesture Recognition (FG 2020), Buenos Aires, Argentina, 2020, pp. 877-881, doi: 10.1109/FG47880.2020.00118

https://rightsstatements.org/vocab/InC/1.0/
© 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
https://rightsstatements.org/vocab/InC/1.0/
doi:https://doi.org/10.1109/FG47880.2020.00118
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi-fe202103258326
Tiivistelmä

Abstract

Automatic kinship verification from facial images is an emerging research topic in machine learning community. In this paper, we proposed an effective facial features extraction model based on multi-view deep features. Thus, we used four pre-trained deep learning models using eight features layers (FC6 and FC7 layers of each VGG-F, VGG-M, VGG-S and VGG-Face models) to train the proposed Multilinear Side-Information based Discriminant Analysis integrating Within Class Covariance Normalization (MSIDA + WCCN) method. Furthermore, we show that how can metric learning methods based on WCCN method integration improves the Simple Scoring Cosine similarity (SSC) method. We refer that we used the SSC method in RFIW’20 competition using the eight deep features concatenation. Thus, the integration of WCCN in the metric learning methods decreases the intra-class variations effect introduced by the deep features weights. We evaluate our proposed method on two kinship benchmarks namely KinFaceW-I and KinFaceW-II databases using four Parent-Child relations (Father-Son, Father-Daughter, Mother-Son and Mother-Daughter). Thus, the proposed MSIDA + WCCN method improves the SSC method with 12.80% and 14.65% on KinFaceW-I and KinFaceW-II databases, respectively. The results obtained are positively compared with some modern methods, including those that rely on deep learning.

Kokoelmat
  • Avoin saatavuus [37744]
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen
 

Selaa kokoelmaa

NimekkeetTekijätJulkaisuajatAsiasanatUusimmatSivukartta

Omat tiedot

Kirjaudu sisäänRekisteröidy
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen