Hyppää sisältöön
    • FI
    • ENG
  • FI
  • /
  • EN
OuluREPO – Oulun yliopiston julkaisuarkisto / University of Oulu repository
Näytä viite 
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

A deep reinforcement learning framework to combat dynamic blockage in mmWave V2X networks

Chen, Sheng; Vu, Kien; Zhou, Sheng; Niu, Zhisheng; Bennis, Mehdi; Latva-aho, Matti (2020-05-13)

 
Avaa tiedosto
nbnfi-fe2020100176326.pdf (428.7Kt)
nbnfi-fe2020100176326_meta.xml (40.90Kt)
nbnfi-fe2020100176326_solr.xml (31.67Kt)
Lataukset: 

URL:
https://doi.org/10.1109/6GSUMMIT49458.2020.9083744

Chen, Sheng
Vu, Kien
Zhou, Sheng
Niu, Zhisheng
Bennis, Mehdi
Latva-aho, Matti
Institute of Electrical and Electronics Engineers
13.05.2020

S. Chen, K. Vu, S. Zhou, Z. Niu, M. Bennis and M. Latva-Aho, "1 A Deep Reinforcement Learning Framework to Combat Dynamic Blockage in mmWave V2X Networks," 2020 2nd 6G Wireless Summit (6G SUMMIT), Levi, Finland, 2020, pp. 1-5, doi: 10.1109/6GSUMMIT49458.2020.9083744

https://rightsstatements.org/vocab/InC/1.0/
© 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
https://rightsstatements.org/vocab/InC/1.0/
doi:https://doi.org/10.1109/6GSUMMIT49458.2020.9083744
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi-fe2020100176326
Tiivistelmä

Abstract

Millimeter Wave (mmWave) systems are considered as one of the key technologies in future wireless systems due to the abundant spectrum resources in mmWave band. With the aim of achieving the capacity requirements in vehicular networks, large antenna arrays can be deployed at both the road side units (RSUs) side and the vehicles side. However, dynamic blockage caused by mobile obstacles in mmWave bands may hinder the system reliability. In this work, we study the temporal effects of dynamic blockage in vehicular networks and propose a deep reinforcement learning framework to overcome dynamic blockage. By dynamically adjusting blockage detection parameters and making intelligent handover decisions according to the observed states, system reliability can be significantly improved. Simulation results based on ray-tracing channel data show that the proposed scheme reduces the violation probability by 28.9% over conventional schemes.

Kokoelmat
  • Avoin saatavuus [38841]
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen
 

Selaa kokoelmaa

NimekkeetTekijätJulkaisuajatAsiasanatUusimmatSivukartta

Omat tiedot

Kirjaudu sisäänRekisteröidy
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen