Hyppää sisältöön
    • FI
    • ENG
  • FI
  • /
  • EN
OuluREPO – Oulun yliopiston julkaisuarkisto / University of Oulu repository
Näytä viite 
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

Quantized compressed sensing via deep neural networks

Leinonen, Markus; Codreanu, Marian (2020-05-04)

 
Avaa tiedosto
nbnfi-fe2020050725529.pdf (899.7Kt)
nbnfi-fe2020050725529_meta.xml (27.65Kt)
nbnfi-fe2020050725529_solr.xml (26.07Kt)
Lataukset: 

URL:
https://doi.org/10.1109/6GSUMMIT49458.2020.9083783

Leinonen, Markus
Codreanu, Marian
Institute of Electrical and Electronics Engineers
04.05.2020

M. Leinonen and M. Codreanu, "Quantized Compressed Sensing via Deep Neural Networks," 2020 2nd 6G Wireless Summit (6G SUMMIT), Levi, Finland, 2020, pp. 1-5, doi: 10.1109/6GSUMMIT49458.2020.9083783

https://rightsstatements.org/vocab/InC/1.0/
© 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
https://rightsstatements.org/vocab/InC/1.0/
doi:https://doi.org/10.1109/6GSUMMIT49458.2020.9083783
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi-fe2020050725529
Tiivistelmä

Abstract

Compressed sensing (CS) is an efficient technique to acquire sparse signals in many wireless applications to, e.g., reduce the amount of data and save low-power sensors’ batteries. This paper addresses efficient acquisition of sparse sources through quantized noisy compressive measurements where the encoder and decoder are realized by deep neural networks (DNNs). We devise a DNN based quantized compressed sensing (QCS) method aiming at minimizing the mean-square error of the signal reconstruction. Once trained offline, the proposed method enjoys extremely fast and low complexity decoding in the online communication phase. Simulation results demonstrate the superior rate-distortion performance of the proposed method compared to a polynomial-complexity QCS reconstruction scheme.

Kokoelmat
  • Avoin saatavuus [38840]
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen
 

Selaa kokoelmaa

NimekkeetTekijätJulkaisuajatAsiasanatUusimmatSivukartta

Omat tiedot

Kirjaudu sisäänRekisteröidy
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen