Hyppää sisältöön
    • FI
    • ENG
  • FI
  • /
  • EN
OuluREPO – Oulun yliopiston julkaisuarkisto / University of Oulu repository
Näytä viite 
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

Q-GADMM : quantized group ADMM for communication efficient decentralized machine learning

Elgabli, Anis; Park, Jihong; Bedi, Amrit S.; Bennis, Mehdi; Aggarwal, Vaneet (2020-05-14)

 
Avaa tiedosto
nbnfi-fe2020062946101.pdf (1.147Mt)
nbnfi-fe2020062946101_meta.xml (37.83Kt)
nbnfi-fe2020062946101_solr.xml (34.62Kt)
Lataukset: 

URL:
https://doi.org/10.1109/ICASSP40776.2020.9054491

Elgabli, Anis
Park, Jihong
Bedi, Amrit S.
Bennis, Mehdi
Aggarwal, Vaneet
Institute of Electrical and Electronics Engineers
14.05.2020

A. Elgabli, J. Park, A. S. Bedi, M. Bennis and V. Aggarwal, "Q-GADMM: Quantized Group ADMM for Communication Efficient Decentralized Machine Learning," ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Barcelona, Spain, 2020, pp. 8876-8880, doi: 10.1109/ICASSP40776.2020.9054491

https://rightsstatements.org/vocab/InC/1.0/
© 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
https://rightsstatements.org/vocab/InC/1.0/
doi:https://doi.org/10.1109/ICASSP40776.2020.9054491
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi-fe2020062946101
Tiivistelmä

Abstract

In this paper, we propose a communication-efficient decen-tralized machine learning (ML) algorithm, coined quantized group ADMM (Q-GADMM). Every worker in Q-GADMM communicates only with two neighbors, and updates its model via the group alternating direct method of multiplier (GADMM), thereby ensuring fast convergence while reducing the number of communication rounds. Furthermore, each worker quantizes its model updates before transmissions, thereby decreasing the communication payload sizes. We prove that Q-GADMM converges to the optimal solution for convex loss functions, and numerically show that Q-GADMM yields 7x less communication cost while achieving almost the same accuracy and convergence speed compared to GADMM without quantization.

Kokoelmat
  • Avoin saatavuus [38824]
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen
 

Selaa kokoelmaa

NimekkeetTekijätJulkaisuajatAsiasanatUusimmatSivukartta

Omat tiedot

Kirjaudu sisäänRekisteröidy
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen