Hyppää sisältöön
    • FI
    • ENG
  • FI
  • /
  • EN
OuluREPO – Oulun yliopiston julkaisuarkisto / University of Oulu repository
Näytä viite 
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

Sparse subspace clustering for evolving data streams

Sui, Jinping; Liu, Zhen; Liu, Li; Jung, Alexander; Liu, Tianpeng; Peng, Bo; Li, Xiang (2019-04-17)

 
Avaa tiedosto
nbnfi-fe202003249094.pdf (259.1Kt)
nbnfi-fe202003249094_meta.xml (41.40Kt)
nbnfi-fe202003249094_solr.xml (36.95Kt)
Lataukset: 

URL:
https://doi.org/10.1109/ICASSP.2019.8683205

Sui, Jinping
Liu, Zhen
Liu, Li
Jung, Alexander
Liu, Tianpeng
Peng, Bo
Li, Xiang
Institute of Electrical and Electronics Engineers
17.04.2019

J. Sui et al., "Sparse Subspace Clustering for Evolving Data Streams," ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Brighton, United Kingdom, 2019, pp. 7455-7459. doi: 10.1109/ICASSP.2019.8683205

https://rightsstatements.org/vocab/InC/1.0/
© 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
https://rightsstatements.org/vocab/InC/1.0/
doi:https://doi.org/10.1109/ICASSP.2019.8683205
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi-fe202003249094
Tiivistelmä

Abstract

The data streams arising in many applications can be modeled as a union of low-dimensional subspaces known as multi-subspace data streams (MSDSs). Clustering MSDSs according to their underlying low-dimensional subspaces is a challenging problem which has not been resolved satisfactorily by existing data stream clustering (DSC) algorithms. In this paper, we propose a sparse-based DSC algorithm, which we refer to as dynamic sparse subspace clustering (D-SSC). This algorithm recovers the low-dimensional subspaces (structures) of high-dimensional data streams and finds an explicit assignment of points to subspaces in an online manner. Moreover, as an online algorithm, D-SSC is able to cope with the time-varying structure of MSDSs. The effectiveness of D-SSC is evaluated using numerical experiments.

Kokoelmat
  • Avoin saatavuus [38841]
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen
 

Selaa kokoelmaa

NimekkeetTekijätJulkaisuajatAsiasanatUusimmatSivukartta

Omat tiedot

Kirjaudu sisäänRekisteröidy
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen