Hyppää sisältöön
    • FI
    • ENG
  • FI
  • /
  • EN
OuluREPO – Oulun yliopiston julkaisuarkisto / University of Oulu repository
Näytä viite 
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

Contextual weighting of patches for local matching in still-to-video face recognition

Amara, Ibtihel; Granger, Eric; Hadid, Abdenour (2018-06-07)

 
Avaa tiedosto
nbnfi-fe202003248952.pdf (548.6Kt)
nbnfi-fe202003248952_meta.xml (30.75Kt)
nbnfi-fe202003248952_solr.xml (31.14Kt)
Lataukset: 

URL:
https://doi.org/10.1109/FG.2018.00119

Amara, Ibtihel
Granger, Eric
Hadid, Abdenour
Institute of Electrical and Electronics Engineers
07.06.2018

I. Amara, E. Granger and A. Hadid, "Contextual Weighting of Patches for Local Matching in Still-to-Video Face Recognition," 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), Xi’an, 2018, pp. 756-763. doi: 10.1109/FG.2018.00119

https://rightsstatements.org/vocab/InC/1.0/
© 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
https://rightsstatements.org/vocab/InC/1.0/
doi:https://doi.org/10.1109/FG.2018.00119
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi-fe202003248952
Tiivistelmä

Abstract

Still-to-video face recognition (FR) systems for watchlist screening seek to recognize individuals of interest given faces captured over a network of video surveillance cameras. Screening faces against a watchlist is a challenging application because only a limited number of reference stills is available per individual during enrollment, and the appearance of face captures in videos changes from camera to camera, due to variations in illumination, pose, blur, scale, expression and occlusion. In order to improve the robustness of FR systems, several local matching techniques have been proposed that rely on static or dynamic weighting of patches. However, these approaches are not suitable for watchlist screening applications where the capturing conditions vary significantly over different camera fields of view (FoV). In this paper, a new dynamic weighting technique is proposed for weighting facial patches based on video data collected a priori from the specific operational domain (camera FoV) and on image quality assessment. Results obtained on videos from the Chokepoint dataset indicate that the proposed approach can significantly outperform the reference local matching methods because patch weights tend to grow for discriminant facial regions.

Kokoelmat
  • Avoin saatavuus [38865]
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen
 

Selaa kokoelmaa

NimekkeetTekijätJulkaisuajatAsiasanatUusimmatSivukartta

Omat tiedot

Kirjaudu sisäänRekisteröidy
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen