Hyppää sisältöön
    • FI
    • ENG
  • FI
  • /
  • EN
OuluREPO – Oulun yliopiston julkaisuarkisto / University of Oulu repository
Näytä viite 
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

Deep learning assisted CSI estimation for joint URLLC and eMBB resource allocation

Khan, Hamza; Majid Butt, M.; Samarakoon, Sumudu; Sehier, Philippe; Bennis, Mehdi (2020-07-21)

 
Avaa tiedosto
nbnfi-fe2020101383961.pdf (901.0Kt)
nbnfi-fe2020101383961_meta.xml (38.16Kt)
nbnfi-fe2020101383961_solr.xml (34.58Kt)
Lataukset: 

URL:
https://doi.org/10.1109/ICCWorkshops49005.2020.9145297

Khan, Hamza
Majid Butt, M.
Samarakoon, Sumudu
Sehier, Philippe
Bennis, Mehdi
Institute of Electrical and Electronics Engineers
21.07.2020

Khan, H., Majid Butt, M., Samarakoon, S., Sehier, P. & Bennis, M. (2020). Deep Learning Assisted CSI Estimation for Joint URLLC and eMBB Resource Allocation. In 2020 IEEE International Conference on Communications Workshops (ICC), Dublin, Ireland, 7-11 June 2020: Proceedings, 9145297. doi: 10.1109/ICCWorkshops49005.2020.9145297

https://rightsstatements.org/vocab/InC/1.0/
© 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
https://rightsstatements.org/vocab/InC/1.0/
doi:https://doi.org/10.1109/ICCWorkshops49005.2020.9145297
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi-fe2020101383961
Tiivistelmä

Abstract

Multiple-input multiple-output (MIMO) is a key for the fifth generation (5G) and beyond wireless communication systems owing to higher spectrum efficiency, spatial gains, and energy efficiency. Reaping the benefits of MIMO transmission can be fully harnessed if the channel state information (CSI) is available at the transmitter side. However, the acquisition of transmitter side CSI entails many challenges. In this paper, we propose a deep learning assisted CSI estimation technique in highly mobile vehicular networks, based on the fact that the propagation environment (scatterers, reflectors) is almost identical thereby allowing a data driven deep neural network (DNN) to learn the non-linear CSI relations with negligible overhead. Moreover, we formulate and solve a dynamic network slicing based resource allocation problem for vehicular user equipments (VUEs) requesting enhanced mobile broadband (eMBB) and ultra-reliable low latency (URLLC) traffic slices. The formulation considers a threshold rate violation probability minimization for the eMBB slice while satisfying a probabilistic threshold rate criterion for the URLLC slice. Simulation result shows that an overhead reduction of 50% can be achieved with 12% increase in threshold violations compared to an ideal case with perfect CSI knowledge.

Kokoelmat
  • Avoin saatavuus [38865]
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen
 

Selaa kokoelmaa

NimekkeetTekijätJulkaisuajatAsiasanatUusimmatSivukartta

Omat tiedot

Kirjaudu sisäänRekisteröidy
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen