Hyppää sisältöön
    • FI
    • ENG
  • FI
  • /
  • EN
OuluREPO – Oulun yliopiston julkaisuarkisto / University of Oulu repository
Näytä viite 
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

Compressed sensing with applications in wireless networks

Leinonen, Markus; Codreanu, Marian; Giannakis, Georgios (2019-11-29)

 
Avaa tiedosto
nbnfi-fe2020060139893.pdf (7.672Mt)
nbnfi-fe2020060139893_meta.xml (31.21Kt)
nbnfi-fe2020060139893_solr.xml (30.15Kt)
Lataukset: 

URL:
https://doi.org/10.1561/2000000107

Leinonen, Markus
Codreanu, Marian
Giannakis, Georgios
Now Publishers
29.11.2019

Markus Leinonen, Marian Codreanu and Georgios B. Giannakis (2019), "Compressed Sensing with Applications in Wireless Networks", Foundations and Trends® in Signal Processing: Vol. 13: No. 1-2, pp 1-282. http://dx.doi.org/10.1561/2000000107

https://rightsstatements.org/vocab/InC/1.0/
© 2019 M. Leinonen, M. Codreanu and G. B. Giannakis. The final publication is available from now publishers via http://dx.doi.org/10.1561/2000000107.
https://rightsstatements.org/vocab/InC/1.0/
doi:https://doi.org/10.1561/2000000107
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi-fe2020060139893
Tiivistelmä

Abstract

Sparsity is an attribute present in a myriad of natural signals and systems, occurring either inherently or after a suitable projection. Such signals with lots of zeros possess minimal degrees of freedom and are thus attractive from an implementation perspective in wireless networks. While sparsity has appeared for decades in various mathematical fields, the emergence of compressed sensing (CS) — the joint sampling and compression paradigm — in 2006 gave rise to plethora of novel communication designs that can efficiently exploit sparsity. In this monograph, we review several CS frameworks where sparsity is exploited to improve the quality of signal reconstruction/detection while reducing the use of radio and energy resources by decreasing, e.g., the sampling rate, transmission rate, and number of computations. The first part focuses on several advanced CS signal reconstruction techniques along with wireless applications. The second part deals with efficient data gathering and lossy compression techniques in wireless sensor networks. Finally, the third part addresses CS-driven designs for spectrum sensing and multi-user detection for cognitive and wireless communications.

Kokoelmat
  • Avoin saatavuus [38841]

Samankaltainen aineisto

Näytetään aineisto, joilla on samankaltaisia nimekkeitä, tekijöitä tai asiasanoja.

  • Investigating BOLD signal variability and its physiological signal sources in Alzheimer's disease, behavioral variant frontotemporal dementia, and schizophrenia 

    Tuovinen, Timo
    Acta Universitatis Ouluensis. Series D, Medica : 1787 (Oulun yliopisto, 07.06.2024)
  • Interference suppression and signal detection for LTE and WLAN signals in cognitive radio applications 

    Vartiainen, Johanna; Vuohtoniemi, Risto; Taparugssanagorn, Attaphongse; Promsuk, Natthanan
    International journal on advances in telecommunications : 1&2 (IARIA, 01.09.2017)
  • NF-κB signaling and IL-4 signaling regulate SATB1 expression via alternative promoter usage during Th2 differentiation 

    Khare, Satyajeet P.; Shetty, Ankitha; Biradar, Rahul; Patta, Indumathi; Chen, Zhi Jane; Sathe, Ameya V.; Reddy, Puli Chandramouli; Lahesmaa, Riitta; Galande, Sanjeev
    Frontiers in immunology (Frontiers Media, 02.04.2019)
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen
 

Selaa kokoelmaa

NimekkeetTekijätJulkaisuajatAsiasanatUusimmatSivukartta

Omat tiedot

Kirjaudu sisäänRekisteröidy
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen