Hyppää sisältöön
    • FI
    • ENG
  • FI
  • /
  • EN
OuluREPO – Oulun yliopiston julkaisuarkisto / University of Oulu repository
Näytä viite 
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

A part power set model for scale-free person retrieval

Shen, Yunhang; Ji, Rongrong; Hong, Xiaopeng; Zheng, Feng; Guo, Xiaowei; Wu, Yongjian; Huang, Feiyue (2019-08-10)

 
Avaa tiedosto
nbnfi-fe2020062645825.pdf (1.640Mt)
nbnfi-fe2020062645825_meta.xml (43.00Kt)
nbnfi-fe2020062645825_solr.xml (38.53Kt)
Lataukset: 

URL:
https://doi.org/10.24963/ijcai.2019/471

Shen, Yunhang
Ji, Rongrong
Hong, Xiaopeng
Zheng, Feng
Guo, Xiaowei
Wu, Yongjian
Huang, Feiyue
International Joint Conferences on Artificial Intelligence Organization
10.08.2019

Shen, Y., Ji, R., Hong, X., Zheng, F., Guo, X., Wu, Y., & Huang, F. (2019). A Part Power Set Model for Scale-Free Person Retrieval. Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence. Presented at the Twenty-Eighth International Joint Conference on Artificial Intelligence {IJCAI-19}. https://doi.org/10.24963/ijcai.2019/471

https://rightsstatements.org/vocab/InC/1.0/
© International Joint Conferences on Artificial Intelligence Organization 2019. The Definitive Version of Record can be found online at: https://doi.org/10.24963/ijcai.2019/471.
https://rightsstatements.org/vocab/InC/1.0/
doi:https://doi.org/10.24963/ijcai.2019/471
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi-fe2020062645825
Tiivistelmä

Abstract

Recently, person re-identification (re-ID) has attracted increasing research attention, which has broad application prospects in video surveillance and beyond. To this end, most existing methods highly relied on well-aligned pedestrian images and hand-engineered part-based model on the coarsest feature map. In this paper, to lighten the restriction of such fixed and coarse input alignment, an end-to-end part power set model with multi-scale features is proposed, which captures the discriminative parts of pedestrians from global to local, and from coarse to fine, enabling part-based scale-free person re-ID. In particular, we first factorize the visual appearance by enumerating $k$-combinations for all $k$ of $n$ body parts to exploit rich global and partial information to learn discriminative feature maps. Then, a combination ranking module is introduced to guide the model training with all combinations of body parts, which alternates between ranking combinations and estimating an appearance model. To enable scale-free input, we further exploit the pyramid architecture of deep networks to construct multi-scale feature maps with a feasible amount of extra cost in term of memory and time. Extensive experiments on the mainstream evaluation datasets, including Market-1501, DukeMTMC-reID and CUHK03, validate that our method achieves the state-of-the-art performance.

Kokoelmat
  • Avoin saatavuus [38840]
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen
 

Selaa kokoelmaa

NimekkeetTekijätJulkaisuajatAsiasanatUusimmatSivukartta

Omat tiedot

Kirjaudu sisäänRekisteröidy
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen