Hyppää sisältöön
    • FI
    • ENG
  • FI
  • /
  • EN
OuluREPO – Oulun yliopiston julkaisuarkisto / University of Oulu repository
Näytä viite 
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

Classification of physical activities and sedentary behavior using raw data of 3D hip acceleration

Tjurin, P.; Niemelä, M.; Huusko, M.; Ahola, R.; Kangas, M.; Jämsä, T. (2017-06-13)

 
Avaa tiedosto
nbnfi-fe202001131996.pdf (300.0Kt)
nbnfi-fe202001131996_meta.xml (48.27Kt)
nbnfi-fe202001131996_solr.xml (42.18Kt)
Lataukset: 

URL:
https://doi.org/10.1007/978-981-10-5122-7_218

Tjurin, P.
Niemelä, M.
Huusko, M.
Ahola, R.
Kangas, M.
Jämsä, T.
Springer Nature
13.06.2017

Tjurin P., Niemelä M., Huusko M., Ahola R., Kangas M., Jämsä T. (2018) Classification of physical activities and sedentary behavior using raw data of 3D hip acceleration. In: Eskola H., Väisänen O., Viik J., Hyttinen J. (eds) EMBEC & NBC 2017. EMBEC 2017, NBC 2017. IFMBE Proceedings, vol 65. Springer, Singapore. https://doi.org/10.1007/978-981-10-5122-7_218

https://rightsstatements.org/vocab/InC/1.0/
© Springer Nature Singapore Pte Ltd. 2018. This is a post-peer-review, pre-copyedit version of an article published in IFMBE proceedings. The final authenticated version is available online at: https://doi.org/10.1007/978-981-10-5122-7_218.
https://rightsstatements.org/vocab/InC/1.0/
doi:https://doi.org/10.1007/978-981-10-5122-7_218
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi-fe202001131996
Tiivistelmä

Abstract

The purpose of this study was to develop and validate an algorithm for classifying physical activity (PA) classes and sedentary behavior (SED) from raw acceleration signal measured from hip. Twenty-two adult volunteers completed a pre-defined set of controlled and supervised activities. The activities included nine daily PAs. The participants performed PA trials while wearing a hip-worn 3D accelerometer. Indirect calorimetry was used for measuring energy expenditure. The raw acceleration data were used for training and testing a prediction model in MATLAB environment. The prediction model was built using bagged trees classifier and the most suitable extracted features (mean, maximum, minimum, zero crossing rate, and mean amplitude deviation) were selected using a sequential forward selection method. Leave-one-out cross validation was used for validation. Activities were classified as lying, sitting, light PA (standing, table wiping, floor cleaning, slow walking), moderate PA (fast walking) and vigorous PA (soccer and jogging). The oxygen consumption data were used for estimating the intensity of measured PA. Total accuracy of the prediction model was 96.5%. Mean sensitivity of the model was 95.5% (SD 3.5) and mean specificity 99.1% (SD 0.5). Based on the results PA types can be classified from raw data of the hip-worn 3D accelerometer using supervised machine learning techniques with a high sensitivity and specificity. The developed algorithm has a potential for objective evaluations of PA and SED.

Kokoelmat
  • Avoin saatavuus [38597]
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen
 

Selaa kokoelmaa

NimekkeetTekijätJulkaisuajatAsiasanatUusimmatSivukartta

Omat tiedot

Kirjaudu sisäänRekisteröidy
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen